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Abstract Many contingent convertible bonds (CoCos) issued since 2014
belong to the additional Tier 1 (AT1) capital of the issuing bank
and are thus of a perpetual nature. Within a Black-Scholes setup,
under the very conservative assumption that the CoCo trigger is
activated by an adverse entity, we are able to derive a closed-
form expression for the fair price of such an instrument, provi-
ded it has an equity conversion feature (no write-down feature).
This formula allows for a quick understanding of the mechanics of
such AT1 CoCos, helps to efficiently compute delta-hedge ratios,
and it can be implemented easily on a spreadsheet. Furthermo-
re, the closed-form solution may be used as an integral building
component of an efficient, semi-analytical pricing formula for AT1
CoCos, when an additional call right for the issuing bank and a
step up coupon is present, as typical in the marketplace. Final-
ly, we demonstrate that over the last few years observed CoCo
market prices were too high to be explained by our adverse enti-
ty assumption, but currently (after the recent Credit Suisse CoCo
wipe-out in March 2023) have come down to levels that can be
modeled reasonably with our approach. Our approach can the-
refore be a useful tool to deal with CoCo prices in a market envi-
ronment with distressed banking sector.

1 Introduction Contingent convertible (CoCo) bonds are issued by European
banks in accordance with the Basel III framework1. They are
debt instruments, often of a hybrid nature, which are intended
to serve as a buffer for more senior debt holders in case the
bank runs into financial distress. For background knowledge on
the structure of liabilities in a bank’s balance sheet the reader
is referred to Appendix A. Initially, CoCos are similar to subordi-
nate bonds issued by the bank, but they are either written down
(partially or fully, temporarily or permanently) or converted into
equity upon the occurence of a trigger event. A full nominal write
down feature is also sometimes called a wipe-out feature. The
trigger event can be of various kinds in principal. Currently out-
standing CoCos feature a combination of two different types of
trigger events:

• Accounting trigger:

– An accounting ratio, typically the CET1 ratio, falls below
a certain threshold, see Appendix A for a definition of
CET1.

1More specifically, according to the Capital Requirement Regulation (CRR)
and Capital Requirement Directive IV (CRD-IV).
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• Point of non-viability (PoNV) trigger:

– A specific regulator makes the decision that the trigger
event has occurred.

In the current market environment, it is highly likely that an AT1
CoCo breaches the PoNV trigger long before the accounting trig-
ger is hit, because the accounting triggers are set at very low
levels which nowadays are viewed as being not only critical but
already fatal to the bank. According to Basel III, Pillar 1 defines
strict European-wide laws for all banks, whereas Pillar 2 leaves
some freedom for national regulators to further refine the latter.
For example, the British and Danish central banks have set the
CET1 ratio trigger level for the AT1 CoCos issued by their banks
at 7%, while the Spanish and Italian central banks have set it at
5.125%. It is furthermore worth noticing that AT1 CoCos typically
feature the following covenants, which are in line with the idea of
AT1 capital as being “going concern” capital, as opposed to T2
capital as being “gone concern” capital:

• Discretionary coupon: The issuing bank may omit coupon
payments. More senior bonds (T2 and senior) typically fea-
ture a dividend-stop covenant, i.e. when a coupon is not paid,
the bank must not pay a dividend to its shareholders. This
is not the case for AT1 CoCos, i.e. in theory the bank might
pay a dividend on its stock but omit payment of an AT1 Co-
Co coupon. Even though omitting a coupon on an AT1 CoCo
must be “reconciled” with the regulator, and even though it is
of course not a popular decision by the bank’s management
from the CoCo investors’ point of view, it is still possible in
theory, and constitutes a certain risk for the investor.

• Regulatory call: The issuing bank may redeem the bonds at
par, provided there is a change in the legislation affecting fu-
ture CoCo covenants. For instance, if the regulator decides
that the CET1 ratio trigger level for newly issued CoCos chan-
ges from 7% to 8%, the issuing bank may redeem its outstan-
ding CoCos with the old trigger level at par. Since the half-life
of regulatory rules is not too long these days and since many
outstanding CoCos trade above par due to the high demand
for high-yield bonds in a low interest rate environment, such
a regulatory call constitutes a certain risk for the investor.

• Call and coupon step-up: After a period in which the CoCo
pays a fix coupon rate c1, the coupon rate changes to a floa-
ting coupon plus a fix margin. The floating coupon is linked to
some benchmark rate, e.g. a 5-year mid-swap rate. The mar-
gin to be paid on top of the floating rate is determined as c1
minus the value of the benchmark rate on the issuing date of
the bond. This definition reflects the idea that, provided the
benchmark rate remains unaltered, the coupon rate received
after the fix coupon period remains the same. However, since
the expected forward mid-swap rates in today’s $- or e-swap
curves are higher than their today’s values, the change from
fix to floating coupon actually constitutes a coupon step-up
for the investor. Unfortunately, this does not constitute a be-
nefit for the investor, because after the fix coupon period the
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issuing bank obtains continuous (or Bermudan) call rights at
par, i.e. may at their own will (without consulting the regu-
lator) redeem the CoCos at par. Due to the aforementioned
effective coupon step-up, one might argue that there is inde-
ed a strong incentive for the issuer to call the CoCos at par.
This feature is therefore slightly irritating as it contradicts the
idea of AT1 capital as being “going concern” capital. In the old
framework of Basel II, such step-up coupons along with call
rights at par were rather characteristic for UT2 bonds.

As a consequence of these characteristic features of AT1 coven-
ants, we conclude that an AT1 CoCo should rather be viewed
as a “trust investment” into the issuing bank than as a debt in-
strument. One might therefore argue that it somehow is closer
to equity than to debt. Formally, before the trigger event a Co-
Co might be classified as a T1-bond or a T2-bond. According to
Glionna et al. (2014), in terms of the bank’s capital structure Co-
Cos should actually be thought of as lying between CET1 and
AT1, see Appendix A for background on these notions. In the
present article, we totally ignore the discretionary coupon fea-
ture and the regulatory call feature, simply because these are
too “qualitative” to be modeled by quantitative means, and also
because the risk for the investors is secondary compared with
other involved risks. However, we do tackle the call and coupon
step-up covenant, because it is too important to be ignored in
our view. Moreover, we consider only perpetual CoCos with full
equity conversion feature, because the write-down feature is re-
ally a whole different story. To be precise, we consider CoCos for
which, upon occurence of the trigger event, the investor receives
α shares of the issuing bank, where α is called the conversion
ratio.

Remark 1.1 (On the structure of the conversion ratio)
For the major part of the bonds, the conversion ratio α is con-
tractually specified. The CoCo prospectus specifies a so-called
conversion price, whose reciprocal equals the conversion ratio α.
The conversion price is defined as the highest of (i) the stock pri-
ce at conversion, (ii) some fixed floor price2, and (iii) the nominal
value of one share, which is close to zero and thus neglected in
our study. If the share price trades above the floor price at conver-
sion, then the CoCo investor receives par on his notes. However,
if the share price trades below the floor price, the conversion ratio
equals the reciprocal of the floor price. As conversion is expec-
ted to happen at an unfavorable time point from the view of the
CoCo holder, the share price at that time presumably lies below
the floor price. Therefore we choose the reciprocal of the floor
price in the prospectus as a proxy for the conversion ratio α.

1.1 Review of pricing approaches Generally speaking, the pricing of CoCos is very difficult, not only
but mainly due to the fact that the involved trigger event is difficult
to incorporate into well-known credit- or equity-derivatives pricing
approaches. This is because the fundamental quantities invol-
ved (e.g. CET1 ratio or regulator’s decision) are difficult to ex-
plain jointly with quantities that are usually modeled in standard

2Subject to certain amendments in case of capital restructuring events.
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approaches, such as stock price or default intensity. A second
problem with the pricing of CoCos is the fact that their coven-
ants before the trigger event are often non-standard, as mentio-
ned earlier. Clearly, such complicated covenants complicate the
pricing significantly already in the regular non-CoCo bond case.
Existing pricing approaches can be classified as follows:

• Mertonian balance sheet approach: The idea is to explain
the CoCo-issuing bank as a whole, and then derive prices
for the CoCo-parts of the respective bank’s balance sheet.
From a theoretical viewpoint, the structural balance sheet ap-
proach seems to be the right way to go. It provides the only
suitable setup for a definition of the difficult-to-model trigger
event as accurate as possible by means of a mathematical
model. From a practical viewpoint, this comes at the cost of
having to model many parts of the bank’s balance sheet, and
hence working with a model whose mechanics are hard to
overlook, and which is prone to parameter overflow. To provi-
de examples of major contributions in this direction, Madan,
Schoutens (2011a) opt for an ansatz incorporating conic fi-
nance3, an approach nicely described in Madan, Schoutens
(2011b). Another structural approach, which basically is an
adaptation of the classical debt-equity model of Leland (1994)
to CoCos, can be found in Albul et al. (2010). Penacchi (2010)
applies a structurally similar approach, but even uses mo-
re advanced stochastic processes (stochastic interest rates
and jump-diffusion) and solves the model via Monte Carlo al-
gorithms. Similar structural approaches in this direction are
formulated in Brigo et al. (2013); Cheridito, Xu (2013). The
latter reference additionally discusses a reduced-form model
in which both the CoCo trigger event and the issuing bank’s
bankruptcy time are modeled as the first two jumps of a time-
changed Poisson process. Finally, the article Glasserman,
Nouri (2012) provides a very nice structural equilibrium mo-
deling approach to the pricing of CoCos.

Unlike the aforementioned references, the present article’s goal
is to find a shortcut to the CoCo pricing problem. It is clear that
this must come at the cost of stringent assumptions, but we still
give it a shot and consider a very “reduced” setup with a rea-
sonable trade-off between realism and practical viability. In the
existing literature, there is one popular reference with a similar
intention, namely De Spiegeleer, Schoutens (2012). Assuming
the CoCo bond to be bullet, i.e. a regular coupon bond with finite
maturity, the authors present two simple-to-implement approa-
ches, whose ideas are briefly summarized:

• Credit derivatives approach: The CoCo is priced like a bul-
let bond, only the usually underlying “credit event” is replaced
by the “trigger event”, which is assumed to happen before a
regular credit event. With this logic, the usual credit spread
parameter λ used for the computation of default probabilities
(in the simplest credit risk model with constant intensity) is

3A theory replacing the usual “law of one price” by bid-ask spreads in order
to account for illiquidity effects in the markets.
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replaced by a higher trigger spread parameter λTrigger. The
latter is assumed to be a strictly decreasing function of the
underlying stock price, derived from the first hitting probabili-
ty of a geometric Brownian motion under a certain threshold.
In particular, the CoCo trigger event is assumed to be given
by the share price triggering this threshold, for which an ass-
umption needs to be made.

• Equity derivatives approach: The CoCo is decomposed in-
to a regular bond and a portfolio of certain digital stock op-
tions. To this end, it is assumed that in case of a trigger
event before the maturity of the CoCo the shares are not
received immediately but only at maturity date of the CoCo.
This implies that we may write the discounted cashflows of
the CoCo with unit nominal, coupon payments ci at times ti,
i = 1, . . . , N , and final maturity tN as

DF (tN )
(
1{τ>tN} +

(
(1− β) + β αStN

)
1{τ≤tN}

)
+

N∑
i=1

DF (ti)
(
ci 1{τ>ti} + (1− β) ci 1{τ≤ti}

)
, (1)

where β ∈ [0, 1] denotes the contractually specified fraction
of nominal to be converted into shares upon the trigger event,
τ denotes the arrival time of the trigger event, α the number of
shares to be received in case of conversion per unit of CoCo
nominal (conversion ratio), St the share price at time t ≥ 0,
and DF (t) denotes a discount factor for time point t ≥ 0.
Now further assuming that the stock price is given as in the
classical Black-Scholes model and defining

τ := τL := inf{t > 0 : St ≤ L} (2)

with a model threshold L implies that the expectation value
over the expression in (1) can be computed in closed form,
see Rubinstein, Reiner (1991) for the respective formulas.

Both approaches of De Spiegeleer, Schoutens (2012) rely on the
assumption of the trigger event being defined via (2) as the first
hitting of the share price below a threshold, which does not re-
flect market reality. In particular, the right choice of an appropria-
te modeling constant L is a task far from trivial. Furthermore, the
assumption of a functional relationship between the CET1 ratio
and the stock price is highly questionable. Moreover, it has been
outlined earlier that it is highly likely that the PoNV trigger is hit
before the accounting trigger anyway, which renders the mode-
ling of the CET1 ratio obsolete. Sundaresan, Wang (2010) point
out another economic problem with a trigger definition like in (2):
at conversion there will usually take place a value transfer bet-
ween contingent capital investors and equity holders, the directi-
on of the transfer being determined by the conversion ratio. As a
consequence of the existence of such a value transfer CoCo and
equity are not robust to price manipulation. Unfortunately, Sun-
daresan, Wang (2010) point out that it is typically impossible to
set the conversion ratio a priori at a level avoiding the existence
of a value transfer upon conversion.
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As a consequence of these considerations, the core idea of the
present article is to leave through the back door and complete-
ly avoid an explicit definition of the trigger event arrival time τ . In
contrast, we make the assumption that τ is chosen by an external
entity in such a way that the CoCo investor’s expected earning
is minimized (adverse entity assumption). Appearing peculiar on
the first glimpse, we argue that this assumption is not too un-
realistic because it reflects the fact that CoCo investors are by
definition the weakest link of the chain of debt holders, and the
trigger timing is most likely not to be in their favor. Surprisingly,
under this assumption τ will be shown to be of the form (2) for a
“worst-case” trigger level depending on the CoCo covenants, the
interest rate, and the stock volatility.
The remaining article is organized as follows. Section 2 derives
a closed formula for perpetual CoCos with equity conversion fea-
ture, when no additional call rights for the issuing bank are pre-
sent. Section 3 extends this result to the case when the CoCo
provides its issuing bank with an additional call right (along with
a step up coupon), as is the case in practice. Section 4 discus-
ses the derived pricing approach in a concrete real-world exam-
ple. Finally, Section 5 concludes and the Appendix provides the
proofs as well as background on a bank’s capital structure.

2 Perpetual CoCos The present section’s goal is to derive a closed-form pricing for-
mula for such perpetual CoCos with equity conversion feature.
We must rely on some simplifying assumptions in order to do so,
but we try to comment on each of them and give our opinion on
how severe it is and whether it may be generalized in potential
future research. In our view, the value of a closed-form expres-
sion for such complicated instruments is at least twofold: (1) It
provides a quick understanding of the instrument mechanics that
allows to draw conclusions regarding risk profile and hedging. In
particular, it serves as a basis for generalizations, and we pro-
vide one example for such an extension in Section 3. (2) It may
be implemented by traders in a spreadsheet, which is often a ne-
cessary requirement in order to spark investors’ interest into a
new product. In the sequel, we provide a list of the assumptions
we impose.

(A1) Flat interest rate term structure: We assume that the evo-
lution of a risk-free bank account used for discounting is given
by t 7→ er t for a short rate parameter r ≥ 0.

(A2) Continuous coupon payments: It is assumed that the
coupon rate c is paid continuously, instead of discretely (as
is the case in practice).

(A3) Black-Scholes dynamics: The stock price process {St}t≥0

is assumed to follow the dynamics

dSt = St (r dt+ σ dWt)

under a risk-neutral pricing measure, under which {Wt}t≥0

denotes standard Brownian motion. The natural filtration of
{Wt}t≥0 is denoted by (Ft)t≥0.
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Among these, assumption (A1) is probably the most severe for
practical purposes. Clearly, a relaxation to the case of a deter-
ministic, but non-constant short rate would be highly desirable.
Unfortunately, however, our derivation hinges on the assumpti-
on of a flat interest rate curve. Nevertheless, we provide some
advice on how to choose r and how to draw conclusions from
our result to the more general case of non-constant interest ra-
tes in Remark 2.3(c). Assumption (A3) is required in order to end
up with closed formulas, but it is also convenient because the
popularity of the Black-Scholes model implies that the resulting
formula has a high degree of communicability – in particular to
traders without deep background in probability theory. The conti-
nuous rather than discrete coupon payments in assumption (A2)
basically simplify notation but constitute an acceptable impreci-
seness in our opinion. However, step-up coupons are ruled out
by assumption (A2), see Section 3 for a description of how their
incorporation affect the problem (and the solution).

Remark 2.1 (On the level of abstraction)
So far, we have not made any assumption on the credit-worthiness
of the CoCo-issuing bank, except implicitly via the constant stock
price volatility σ. In fact, we will not do so at all but instead re-
main within this tiny setup, which is very “reduced” compared
with, e.g., balance sheet approaches. Implicitely, we assume that
a default of the CoCo is impossible, e.g. it is assumed that the
trigger event happens almost surely before a coupon is not paid.
In our view, besides the ability to obtain a closed pricing formula,
this high level of abstraction has the appealing nature that it focu-
ses on the dependence between the CoCo and the stock price.
Keeping in mind the adjacency of both instruments in the bank’s
capital structure and the fact that many CoCo investors are in-
terested in hedging sensitivities of the CoCo with respect to the
underlying stock, the model is narrowed down to the essential
quantities.

The most critical aspect in the pricing of CoCos is the definition
of the trigger event. Denoting by τ ∈ (0,∞] the random future
time of the CoCo trigger event, the (random) net present value of
the perpetual CoCo under our assumptions (A1)-(A3) is given by

P (τ) := c

∫ τ

0
e−r u du+ e−r τ αSτ ,

where α > 0 denotes the conversion ratio, i.e. the number of
shares per unit bond nominal that is received as a result of the
CoCo trigger event. Arbitrage pricing theory suggests that the
CoCo price is given as E[P (τ)], which necessitates a reasona-
ble stochastic model for the random variable τ . However, and this
is a major novelty of the present approach, we do not impose a
model for τ , because it is not an easy task, as has been mentio-
ned earlier. Instead, we put ourselves into the shoes of a CoCo
investor and make the following conservative assumption:

(A4) Adverse entity assumption: The random variable τ is an
(Ft)-stopping time which is chosen by an external, “adverse”
market entity, so that the CoCo-investor’s expected profit is
minimized.
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The adverse market entity in assumption (A4) may be thought of
as either the regulator or the CoCo-issuing bank itself. If one is
not willing to accept this assumption, our derivation below does
not provide the CoCo price, but instead a lower bound on this
price, so that it is still useful. However, it is our intuition that this
lower bound is quite sharp, because the timing of the CoCo trig-
ger is most likely to be not in the CoCo-investor’s favor. This re-
flects the core idea of this instrument, acting as a buffer for more
secured debt holders in case the issuing bank runs into financial
turmoil.
Having collected all assumptions (A1)-(A4), the fair CoCo price
is reasonably defined as

p := inf
τ∈T

{
E[P (τ)]

}
,

where T denotes the set of all (Ft)-stopping times. The value p
can be computed in closed form, which is the content of the fol-
lowing theorem, and the main contribution of the present article.

Theorem 2.2 (Price of perpetual CoCo)
Under assumptions (A1)-(A4) the value of the perpetual CoCo is
given by the formula

p =

αS0, if αS0 ≤ 2 c
σ2+2 r

c
r −

c σ2

r (σ2+2 r)

(
2 c

αS0 (σ2+2 r)

) 2 r
σ2
, else

and the optimal stopping rule for the adverse entity is given by

τ∗ := inf
{
t > 0 : αSt ≤

2 c

σ2 + 2 r

}
.

Proof
Postponed to Appendix B. □

We like to remark at this point that the formula is almost identical
to (Black, Cox, 1976, Formula (16), p. 364). The latter formula
gives the value F = F (V0) of a risky perpetual bond in depen-
dence on the current firm value V0 within the first structural credit
risk model with endogenous default as

F (V0) =
C

r
− C σ2

r (σ2 + 2 r)

( 2C

V0 (σ2 + 2 r)

) 2 r
σ2
,

where C denotes the absolute amount of coupon that is paid
per unit of time4. With C = c it is observed that F (αS0) = p
in the case αS0 > 2 c/(σ2 + 2 r). This similarity is interesting,
because the economic interpretation and derivation is different
in both cases. The common ground stems from the fact that the
two different mathematical derivations involve the optimal choice
of a threshold level for a geometric Brownian motion, which re-
presents the stock price in the present paper and a firm value in
Black, Cox (1976).

4A unit of time must be thought of as one year here, since r is an annual rate.
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Remark 2.3 (Implications of Theorem 2.2)
We collect a number of conclusions that can be drawn from Theo-
rem 2.2 in the sequel.

(a) Structure of the result: The most adverse trigger timing for
the CoCo investor is shown to be the point in time when the
stock price first breaches the level L∗ := 2 c/(α (σ2 + 2 r))
from above. Intuitively, L∗ increases in the coupon rate c, be-
cause – thinking of the issuer as being the adverse entity –
the higher the coupon to be paid by the issuer the stronger
his or her incentive to quit those payments to the investor.
Similarly, the trigger level L∗ decreases in the stock volatility
because, intuitively, higher volatility implies a higher proba-
bility that the stock price falls below a low level within short
time. Furthermore, the CoCo price is an increasing function
in the stock price S0, increasing to the value c/r of a risk-free
perpetual bond as S0 → ∞. These properties are visualized
in Figure 1.
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Fig. 1: Visualization of the CoCo pricing formula in dependence
of the current stock price S0, for varying values of the
volatility parameter σ. The other parameters are cho-
sen as follows: r = 3.74% according to Remark 2.3(c),
S0 = 4.1581, c = 8.25%, α = 0.3788.

(b) Reasonable trigger level: The pricing approaches descri-
bed in De Spiegeleer, Schoutens (2012) rely on the definition
of the trigger arrival as the first hitting time of the stock price
below a certain trigger level L, see (2). However, L is mo-
del input and it is not clear how to choose it appropriately.
Given stock volatility σ, interest rate parameter r, and CoCo
covenants c and α, Theorem 2.2 spits out the trigger level L∗
which is most conservative from an investor’s point of view,
and therefore serves as a good candidate for putting it into
the formulas of De Spiegeleer, Schoutens (2012).

(c) The choice of r: Assumption (A1) of a flat interest rate term
structure is restrictive. Nevertheless, Theorem 2.2 shows that
the CoCo price has the nice structure of being equal to the
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price of a risk-free perpetual c/r (independently of σ) minus a
correction term (depending on σ). Denoting the price of a risk-
free perpetual by pr := c/r, the CoCo price may be rewritten
in terms of pr as

p = pr −
(
pr −

2

2 pr + σ2/c

)(αS0 (2 pr + σ2/c)

2

)− 2 c
pr σ2

.

(3)

This provides an approximate formula for the CoCo price wi-
thout the short rate parameter r, in which the (elsewhere
computed) value of a risk-free perpetual may be plugged in.
For instance, having bootstrapped a determinsitic short rate
curve t 7→ r(t) from observed swap rates according to com-
mon market standard, e.g. along one of the methods descri-
bed in Hagan, West (2006), one might plug the value pr :=
c
∫∞
0 e−r(t) dt into (3). This is equivalent to the choice r :=

1/
∫∞
0 e−r(t) dt and at least implies consistency of the first

term in the formula with the pricing of risk-free debt within
one’s pricing library. In this way, the error induced by ass-
umption (A1) is attributed completely to the correction term,
which might be fine-tuned separately by different means (yet
to be researched).

(d) The trigger probability: The probability distribution of the
trigger arrival time is known in closed form, see, e.g., Black,
Cox (1976). Provided S0 > L∗ (otherwise τ∗ = 0 almost su-
rely), it is given by

P(τ∗ ≤ t) = 1− Φ

((
r − σ2

2

)
t− log

(
L∗
S0

)
σ
√
t

)

+ e
( 2 r
σ2−1) log

(
L∗
S0

)
Φ

((
r − σ2

2

)
t+ log

(
L∗
S0

)
σ
√
t

)
,

where Φ denotes the distribution function of a standard nor-
mally distributed random variable. The probability that the trig-
ger event occurs not before time t is decreasing in the volati-
lity parameter, see Figure 2. The density of τ∗ for S0 > L∗ is
given by

fτ∗(t) =
log
(

S0
L∗

)
t σ

√
2π t

exp
(
−

(
log
(

S0
L∗

)
+
(
r − σ2

2

)
t
)2

2σ2 t

)
.

(e) Delta-hedge ratio: CoCo investors might be interested in the
computation of a hedge ratio for the CoCo price with respect
to the underlying stock price. To this end, the closed formula
of Theorem 2.2 readily implies

∂

∂S0
p =

α , if αS0 ≤ 2 c
σ2+2 r

α−−2 r

σ2

(
2 c

S0 (σ2+2 r)

) 2 r+σ2

σ2
, else

.
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Fig. 2: Visualization of the probability t 7→ P(τ∗ > t) that τ∗ does
not occur before time t for varying volatility parameters σ
and the same specifications as in Figure 1.

3 Perpetual CoCos with an

additional call right

Notice that all currently outstanding CoCos provide their issuing
bank with additional call rights at par, starting at some future
point in time T > 0, i.e. the issuing bank is allowed to repay
the debt early. Moreover, at T , if the CoCo is not called, there is
a step up feature, i.e. the coupon rate is slightly higher than be-
fore T . For the sake of simplicity, we assume that the issuer has
precisely one call right at T . In reality the call right is continuous
(or Bermudan style) starting from T . We comment on the possi-
bility of further generalization in Remark 3.1 below. Denoting the
coupon rate before T by c1 and after T by c2, this results in a net
present value of

P̃ (τ) :=
(
c1

∫ τ

0
e−r u du+ e−r τ αSτ

)
1{τ≤T}

+
(
c1

∫ T

0
e−r u du+min

{
e−r T , c2

∫ τ

T
e−r u du+ e−r τ αSτ

})
1{τ>T}.

This complicates our problem significantly, because the callable
perpetual CoCo price is now reasonably defined as

p̃ := inf
τ∈T

{E[P̃ (τ)]}

and the respective minimization is more difficult. In economic
terms, the adverse entity may not only opt for conversion in case
of a falling stock price but can also stop his losses at T in case
the stock price at T is so high that he or she thinks it is better to
call than hope for a quick decline of the stock. We can make use
of the knowledge about the optimal solution in Theorem 2.2 in or-
der to tackle this problem as well. To this end, we emphasize the
dependence of p in Theorem 2.2 on the coupon rate c explicitly:

p(c)(S0) :=

αS0, if αS0 ≤ 2 c
σ2+2 r

c
r −

c σ2

r (σ2+2 r)

(
2 c

αS0 (σ2+2 r)

) 2 r
σ2
, else

.
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With the tower property of conditional expectation and the Mar-
kov property of Brownian motion, it follows that

p̃ = inf
τ∈T

{E[P̂ (τ)]}, (4)

with

P̂ (τ) :=

{
c1
∫ τ
0 e−r u du+ e−r τ αSτ , if τ ≤ T

c1
∫ T
0 e−r u du+ e−r T min{1, p(c2)(ST )} , else

.

In particular, the value of P̂ (τ) in the case τ > T is independent
of τ . In economic terms, the adverse entity may either opt for
conversion into equity before time T , or wait until time T and then
decide between a call at par and the payment of a non-callable
perpetual CoCo with coupon rate c2. The remaining minimizati-
on problem is now straightforward to implement using tree pricing
techniques. Required is only an efficient trinomial tree implemen-
tation for {St}t∈[0,T ], which is a standard exercise.

Remark 3.1 (Potential for generalizations)
The use of tree pricing for the solution of (4) has the advanta-
ge that it allows to relax assumption (A1) to the assumption that
the short rate needs not be constant but may be a deterministic
function t 7→ r(t) that becomes constant only after the call date
T , which is a significant improvement for practical purposes. Mo-
reover, the inclusion of more call rights in a period after T , say
[T, T +S], is conceptually straightforward. One has to define the
value at the end note of the tree, corresponding to T + S, like
above using the solution of Theorem 2.2, and within the tree pri-
cing backwardation procedure include additional call decisions at
each note between T and T +S. Hence, for the sake of clarity of
presentation we consider it sufficient to illustrate the case of only
one call right.

3.1 Quick numerical approximation We provide an alternative ansatz to compute the price p̃ appro-
ximately without tree pricing in the sequel. The structure of the
minimization problem suggests to make the following presumpti-
on.

(A5) Presumption on the optimal stopping before T : The op-
timal stopping time for the problem (4) is of the form τL as in
(2) for some optimally chosen threshold L.

Under assumption (A5) the expectation gL(S0) := E[P̂ (τL)] may
be minimized in L in order to yield p̃. Even if assumption (A5)
does not hold true, we obtain a very good approximation for p̃,
i.e. we work with the approximation

p̃ = inf
τ∈T

{E[P̂ (τ)]} ≈ inf
L>0

{E[P̂ (τL)]} = inf
L>0

{gL(S0)}.

Our numerical experiments suggest that assumption (A5) is inde-
ed not too bad, see, e.g., Figure 3. The following lemma provides
gL(S0) in numerically convenient form.

121212



Lemma 3.2 (Computation of required expectation)
For x > 0 the value gL(x) is given as

gL(x) =

∫ T

0

(c1
r

(
1− e−r u

)
+ αLe−r u

) log
(

x
L

)
uσ

√
2π u

×

× exp
(
−

(
log
(

x
L +

(
r − σ2

2

)
u
))2

2σ2 u

)
du

+
c1
r

(
1− e−r T

)(
Φ
((r − σ2

2

)
T − log

(
L
x

)
σ
√
T

)

− e

(
2 r
σ2−1

)
log

(
L
x

)
Φ
((r − σ2

2

)
T + log

(
L
x

)
σ
√
T

))

+ e−r T

1
σ

log

(
x
L

)
∫

−∞

(
1− exp

(
−

2 log
(

x
L

)
σ T

( 1
σ

log
(x
L

)
− u
)))

×

×min
{
1, p(c2)

(
x e−σ u

)} 1√
2π T

e−

(
u−

(
σ
2 − r

σ

)
T

)2

2T du

Proof
Postponed to Appendix C. □

Akin to the proof of Theorem 2.2, numerical experiments con-
firm our intuition that gL(x) ≥ gL∗(x) uniformly in x, where L∗
is chosen to be the unique threshold L satisfying ∂

∂xgL(L) = α.
The latter equation can be solved for L∗ within seconds via a
bisection routine. Consequently, the approximation p̃ ≈ gL∗ is a
reasonable and efficiently computable formula for the perpetual
CoCo with additional call right. Figure 3 visualizes this approxi-
mation.
Finally, let us remark that the call probability of the CoCo at time
T may be computed in closed form. The CoCo is called if and
only if it is not converted into equity before T and p(c2)(ST ) > 1.
Denoting by L∗ the unique solution of the equation ∂

∂xgL(L) = α
for L, this probability is computed as

P
(

min
t : t≤T

{St} > L∗, p
(c2)(ST ) > 1

)
= P

(
max
t : t≤T

{Ŵt} <
1

σ
log
(S0

L∗

)
, p(c2)

(
S0 e

−σ ŴT

)
> 1
)

=

1
σ

log

(
S0

(p(c2))−1(1)

)
∫

−∞

(
1− e

−max

{ 2 log

(
S0
L∗

)
σ T

(
1
σ

log

(
S0
L∗

)
−w

)
, 0

})
×

× 1√
2π T

e−

(
w−

(
σ
2 − r

σ

)
T

)2

2T dw,

where knowledge about the conditional distribution of the run-
ning maximum of Ŵt := (σ/2 − r/σ) t + Wt until T given ŴT

was used, see, e.g., (Shreve, 2004, Theorem 7.2.1, p. 296). The
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L

E[gL(S0)] (L∗=1.3819)

p̃ = inf
τ

E[P̂ [τ ]] (tree pricing)

risk-free bond until T

Fig. 3: Visualization of the CoCo price p̃ and the approximati-
on formula p̃ ≈ gL∗ in dependence of the current stock
price S0, for σ = 50%. The other parameters are cho-
sen like in Figure 1, except for the coupons which are
now c1 = 0.0825 and c2 = 0.06075 + r (step up cou-
pon). The optimal threshold in the minimization routine
(4) under assumption (A5) is L∗ = 1.3847, whereas
the optimal threshold according to Theorem 2.2, when
ignoring the call right and step up coupon (assuming
c = c1), is L∗ = 1.3414. The plot also shows the value
c1
∫ T
0 e−r t dt+ e−r T of the risk-free bond with coupon c1

and maturity T , which acts as an upper bound for p̃.

required value (p(c2))−1(1) is computed in closed form as

(p(c2))−1(1) =

1/α , if 2 c2
σ2+2 r

> 1

2
α

(
σ2

c2−r

)σ2

2 r
(

c2
σ2+2 r

)σ2+2 r
2 r , else

.

This probability is visualized in Figure 4 for the CoCo example of
Figure 3. It is observed how this probability approaches one for
S0 → ∞.

4 A real-world example We consider the CoCo BACR 9.25 GBP Perp, which was recent-
ly issued by Barclays PLC briefly before the swiss bank Credit
Suisse was taken over by its peer UBS and Credit Suisse AT1
CoCos have been written down to zero. The latter event had an
enormous impact on the CoCo market, sending the average Co-
Co prices down 10-20%, since the market feared more CoCos
could be written down or converted into equity. We only consider
this particular CoCo as one representative for the general CoCo
market, similar findings hold for other CoCos as well. The BACR
9.25 GBP Perp CoCo has the following parameters according to
the notation in this article: c1 = 9.25%, c2 = 5-year mid-swap
rate GBP + 5.639%, α = 1/1.65. On 30 March 2023 the equi-
ty equals around 1.4558 GBP and we choose r = 3.11% as a
proxy for the flat interest rate required in our pricing routine. This
number is computed according to the logic described in Remark
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Fig. 4: Visualization of the probability that the CoCo of Figure 3
is called at T1 in dependence on S0. Clearly, if the current
stock price is already below L∗ the call probability is zero
because conversion into equity is imminent.

2.3(c). The CoCo price is around 87.5%, which corresponds to a
parameter σ = 32.11% according to our methodology. It is remar-
kable that this is almost exactly the value of the historical stock
volatility over the past 260 business days on 30 March 2023.
Consequently, our method provides an almost accurate explana-
tion for the current market price. However, at the beginning of
the month the CoCo traded around 100%, where it was issued,
and this price was absolutely not explainable with the presented
technique. In intuitive terms, before the Credit Suisse incident,
our adverse entity assumption was way too conservative to ex-
plain observed market prices. However, after the recent market
drop our conservative technique is suddenly capable of explai-
ning the prices. Consequently, our method might be a suitable
tool to explain CoCo prices in a distressed market environment.

5 Conclusion and Outlook Within a Black-Scholes setup we managed to derive a closed
formula for perpetual CoCos with full equity conversion feature,
which is applicable to one fifth of all currently outstanding CoCos.
We furthermore discussed some applications and implications of
this result.
Concerning an outlook of potential further research, relaxations
of the assumptions (A1)-(A3) are of high relevance in practice.
For instance, a relaxation of assumption (A3) to regime-switching
stock price processes might be achievable via similar techniques
as in Guo, Zhang (2004). Regarding a relaxation of assumption
(A2), we have already provided one feasible solution in Secti-
on 3, which sheds some light on how the required techniques
change with further relaxations (e.g. to multiple calls). Discreti-
zing the coupon payments or relaxing assumption (A1) to a non-
constant but deterministic short rate leads to similar difficulties,
which might be overcome in future research at the cost of a more
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involved expression for fL, resp. gL.

Appendix A: capital structure A bank’s capital structure looks roughly as follows under Basel
III (seniority increasing), in accordance with the Capital Requi-
rement Regulation (CRR) and the Capital Requirement Directive
IV (CRD-IV). RWA stands for risk-weighted assets, a notion that
is defined in the Basel III legislation.

(1) Tier 1 Capital (T1):

(1.1) Common Equity Tier 1 (CET1):

* Must comprise ≥ 4.5% of RWA.

* Basically consists of regular shares, preferred stock,
retained earnings.

(1.2) Additional Tier 1 (AT1):

* Together with CET1 must comprise ≥ 6% of RWA,
must not exceed 1.5% of RWA.

* Going concern capital, i.e. capital intended to su-
stain the company, subordinate to Tier 2.

* Perpetual bonds with right to omit coupons under
certain circumstances (no calls along with signifi-
cant step-ups as incentive to call), certain prefe-
rence shares.

(2) Tier 2 Capital (T2):

* Together with T1 must comprise ≥ 8% of RWA.

* Gone concern capital, i.e. capital acting as buffer in
case of bankruptcy but not to sustain the compa-
ny in case of no bankruptcy, subordinate to senior
debt.

* Regular bonds, subordinate to senior debt.

(3) Senior Debt Capital:

* Regular bonds, senior to Tier 1 and Tier 2.

The indicated minimal capital requirements are strict, i.e. the
bank is closed if it does not meet them. The CRR demands in ad-
dition that the bank holds a combined capital buffer comprised of
CET1. Adding this buffer to the minimal requirements, legislation
demands that CET1 is at least 7% of RWA (slightly depending on
the national buffer requirements). What is the use of this combi-
ned buffer? Banks that fail to meet the combined buffer requi-
rement must calculate a maximum distributable amount (MDA),
which serves as basis for the payment of dividends on the bank’s
stocks or bonuses to its employees. The CET1 ratio, which is of-
ten involved in the definition of CoCo trigger events, is computed
as CET1 divided by the sum of RWA. Notice that the definition of
RWA is hence crucial for the computation of the CET1 ratio, and
hence for the definition of the CoCo trigger event. Consequent-
ly, a regulatory change of the computation method for RWA may
alter the definition of the CoCo trigger event and might lead to a
regulatory call of the CoCo. Such a scenario is not too unlikely
and must in particular be kept in mind by investors into CoCos
that trade significantly above par.
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Appendix B: proof of Theorem 2.2 Our strategy is to rewrite the problem in such a way that it re-
sembles a solved one. To this end, it is useful to switch from inf
to sup and noticing that

−p = sup
τ∈T

{
E[−P (τ)]

}
,

−P (τ) = − c

r

(
1− e−r τ

)
− α e−r τ Sτ .

This maximization problem resembles the computation of the
perpetual put option, see, e.g., Gerber, Shiu (1994). Indeed, the
known derivation of the perpetual put option problem – we work
along the lines of (Shreve, 2004, p. 345ff) – can be enhanced in
order to solve the present optimization. In detail, the proof relies
on the following auxiliary steps.

(I) For L > 0 denote τL := inf{t > 0 : St ≤ L} as in (2) and
fL(S0) := E[−P (τL)]. It then follows that

fL(S0) =

−αS0, if S0 ≤ L

− c
r +

(
c
r − αL

)(
S0
L

)− 2 r
σ2
, else

.

Proof
If S0 ≤ L, then τL = 0 and fL(S0) = −αS0, as claimed. If
S0 > L, we obtain

fL(S0) = E
[
− c

r

(
1− e−r τL

)
− α e−r τL L

]
= − c

r
+
( c
r
− αL

)
E
[
e−r τL

]
= − c

r
+
( c
r
− αL

)(S0

L

)− 2 r
σ2
,

where the last equality follows like in the proof of (Shreve,
2004, Lemma 8.3.4, p. 348–349). □

(II) We have fL(x) ≤ fL∗(x) uniformly in x > 0 for

L∗ :=
2 c

α (σ2 + 2 r)
.

Proof
On the interval [L,∞) we have seen in (1) that

fL(x) = − c

r
+ α

( c

r α
− L

)(x
L

)− 2 r
σ2

:= f̂L(x).

In order to maximize f̂L(x) uniformly in x it suffices to maxi-
mize the function g : L 7→ (c/(r α)−L)L2 r/σ2

in L. It is not
difficult to observe that

L∗ := argmax
L>0

{g(L)} =
2 c

α (σ2 + 2 r)
.

Now for x > 0 arbitrary we have

sup
L≥0

{fL(x)} = max
{

sup
L :L>x

{fL(x)}, sup
L :L≤x

{fL(x)}
}

= max
{
− αx, sup

L :L≤x
{f̂L(x)}

}
.
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Since f̂L∗(L∗) = −αL∗ and f̂
′
L∗
(x) ≥ (−αx)

′
= −α for

x > L∗, we observe

f̂L∗(x) ≥ −αx for x ≥ L∗, fL∗(x) ≥ −αx for x > 0. (5)

Now consider x ≥ L∗. Then

sup
L≥0

{fL(x)} = max
{
− αx, sup

L :L≤x
{f̂L(x)}

}
= max

{
− αx, f̂L∗(x)}

}
= f̂L∗(x) = fL∗(x),

where (5) is used in the third equality. For x < L∗ we see

sup
L≥0

{fL(x)} = max
{
− αx, sup

L :L≤x
{f̂L(x)}

}
= max

{
− αx, sup

L :L≤x
{− c

r
+ αx−

2 r
σ2 g(L)}

}
= max

{
− αx, − c

r
+ αx−

2 r
σ2 g(x)

}
= −αx = fL∗(x). □

(III) The stochastic process

t 7→ − c

r

(
1− e−r t

)
+ e−r t fL∗(St), t ≥ 0,

is a super-martingale.

Proof
An application of Itô’s formula5 implies that the drift term of
the process in the statement is given by

e−r t
(
− c− r fL∗(St) + r St f

′
L∗(St) +

σ2

2
S2
t f

′′
L∗(St)

)
dt.

Plugging in the respective formulas for the first and second
derivative of fL∗ , it follows that the drift equals −c e−r t ≤
0 whenever St ≤ L∗ and equals zero whenever St > L∗.
Hence, the drift is always non-positive and the process is a
super-martingale, as claimed. □

Using (I)-(III) above, the claim can now be established. Let τ ∈ T
arbitrary. Then, applying (III) in the first, Fatou’s lemma in the
second, and (5) in the third inequality below,

fL∗(S0) = lim
n→∞

{
− c

r

(
1− e−r · 0

)
+ e−r · 0 fL∗(S0)

}
≥ lim

n→∞
E
[
− c

r

(
1− e−r min{τ,n}

)
+ e−r min{τ,n} fL∗(Smin{τ,n})

]
≥ E

[
− c

r

(
1− e−r τ

)
+ e−r τ fL∗(Sτ )

]
≥ E

[
− c

r

(
1− e−r τ

)
− e−r τ αSτ

]
= E[−P (τ)],

yielding fL∗(S0) ≥ −p, from which the claim follows.

5More formally, Itô-Tanaka’s formula, because f
′′
L∗ has a discontinuity at L∗,

see, e.g., (Mörters, Peres, 2010, Remark 7.33, p. 210) for details.
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Appendix C: Proof of Lemma 3.2 We observe

E[P̂ (τL)] =

∫ T

0

(c1
r

(
1− e−r t

)
+ e−r t αL

)
dP(τL ≤ t)

+
c1
r

(
1− e−r T

)
P(τL > T )

+ e−r T E
[
1{ min

t : t≤T
{St}>L} min{1,−fL∗(ST )}

]
︸ ︷︷ ︸

(∗)

.

Furthermore, we apply the fact that {Wt}
d
= {−Wt} and denote

Ŵt := (−r/σ+σ/2) t+Wt, enabling us to rewrite the remaining
expectation value as

(∗) = E
[
1{

max
t : t≤T

{Ŵt}< 1
σ

log

(
S0
L

)} min{1,−fL∗(S0 e
−σ ŴT )}

]
= E

[
min{1,−fL∗(S0 e

−σ ŴT )}×

× E
[max

{
ŴT , 1

σ
log

(
S0
L

)}
∫
ŴT

2 (2m− ŴT )

T
e−

2m
T

(m−ŴT ) dm
∣∣∣ ŴT

]]
= E

[
min{1,−fL∗(S0 e

−σ ŴT )}×

×
(
1− exp

(
−

2 log
(
S0
L

)
σ T

max
{ 1

σ
log
(S0

L

)
− ŴT , 0

})]
,

where we applied knowledge about the conditional density of the
running maximum of {Ŵt} until T given ŴT , see, e.g., (Shre-
ve, 2004, Theorem 7.2.1, p. 296). Consequently, the expected
value (∗) may be computed as a one-dimensional integral over
closed-form expressions with respect to the normal density of
ŴT . Recalling the closed-form solution of the density and distri-
bution function of τL (replace L∗ by L in the respective formulas
of Remark 2.3(d)), the claimed formula for gL(S0) is obtained.
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