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Abstract Starting from given univariate survival functions, the dependence
structure that maximizes the probability of a joint default can be
given in closed form. This result is called “maximal coupling” or
Dobrushin’s Theorem in the academic literature. When the mar-
ginals are not identical, the solution is not represented by the
comonotonicity copula, opposed to a modeling (mal-)practice in
the financial industry. A stochastic model that respects the mar-
ginal laws and attains the upper bound for joint defaults can be
extracted from the proof of the maximal coupling construction. To
illustrate the theory, we bootstrap default probabilities from credit
default swap contracts referencing on EU peripherals and Ger-
many and compute the upper bound for the probability of Ger-
many defaulting jointly with one of the peripherals.

1 Motivation The modeling of dependent default times is often carried out in
two subsequent steps: the specification of the marginal laws and
the choice of some model for the copula connecting them. Ma-
thematically, this is justified by Sklar’s theorem (see Sklar (1959)),
which states that arbitrary marginals can be connected with any
copula to obtain a valid joint distribution function. The main re-
ason for the popularity of such a modeling approach is that a
dependence structure can be added on top of existing, and well-
understood, marginal models without destroying their structure.
However, the danger of naïvely using this modeling paradigm
is that the resulting distribution must not be reasonable with re-
gards to the economic criterion in concern, as pointed out in the
academic literature many times, see, e.g., Marshall (1996); Mi-
kosch (2006); Genest, Nešlehová (2007); Embrechts (2009), or
(Morini, 2011, Chapter 8) in the context of joint default modeling
in credit risk.
A popular misbelief is that the comonotonicity copula, which ma-
ximizes the dependence if measured in terms of concordance
measures, also maximizes the probability of a joint default (or, at
least, the probability of default times being quite close to each
other). However, this is not the case, because for two compa-
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nies’ default times τ1, τ2 events such as {|τ1 − τ2| < ε} for
small ε > 0, or even {τ1 = τ2}, strongly depend on the mar-
ginal laws of the default times, as will be investigated in qui-
te some detail below. We provide a simple example, which we
adopt from Morini (2009, 2012): let τ1 and τ2 be exponentially
distributed with means 1/λ1 = 100 and 1/λ2 = 10, respective-
ly, and assume that they are coupled by a Gaussian copula Cρ
with parameter ρ ∈ [−1, 1]. Figure 1 visualizes1 the probability
ρ 7→ Pρ(|τ1 − τ2| < 1/12) that both default times happen within
one month in dependence of the parameter ρ. This shows that
the probability of the default times being close to each other ac-
tually decreases with increasing dependence. This might be pro-
blematic if the target risk to be modeled is not the dependence
per se (being measured in terms of correlation or some more ge-
neral concordance measure), but rather the probability of a joint
default.
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Fig. 1: The probability Pρ(|τ1 − τ2| < 1/12) is plotted for diffe-
rent ρ, assuming τ1 has an exponential distribution with
λ1 = 0.01 and τ2 has an exponential distribution with ra-
te λ2 = 0.1, and these marginals are connected with a
Gaussian copula with correlation parameter ρ. Notice that
in the limiting case ρ = 1 we have τ1 = λ1/λ2 τ2 almost
surely, i.e. P1(|τ1 − τ2| < 1/12) = P1(τ1 (1 − λ1/λ2) ≤
1/12).

There are in fact various situations when the risk we truly face is
the probability of a joint event, i.e. τ1 = τ2. Examples in a finan-
cial context are insurance portfolios with simultaneous defaults
caused by a natural catastrophe, credit portfolios with some first-

1This probability can be evaluated numerically as a double integral:

Pρ(|τ1 − τ2| < 1/12)

= 0.001

∫ ∞
0

e−0.01 x

∫ x+1/12

max{0,x−1/12}
cρ
(
1− e−0.01 x, 1− e−0.1 y) e−0.1 ydy dx,

with cρ denoting the Gaussian copula density.
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to-default protection only, or the computation of CVA/DVA adjust-
ments, e.g. the risk that a counterparty defaults jointly with an
underlying reference entity in a credit default swap (CDS). In re-
liability theory, one often has two security systems with failure
times τ1, τ2 and the risk we face is a simultaneous collapse of
these systems, i.e. τ1 = τ2. For example, think of an energy
plant which can only run when at least one of two technical se-
curity devices is working properly. When one of both components
fails but the other component doesn’t, then the whole system can
be maintained and the failed component can be replaced as soon
as possible. However, when both components fail jointly for some
reason, then the whole system collapses, which is the major risk
to be modeled properly. It is highly plausible that the marginal
survival functions of the single components are well-understood,
e.g. from information provided by their respective producers.
The present article is partly inspired by a series of papers de-
aling with the investigation of a multivariate distribution under
given marginals but with unknown copula. The references Puc-
cetti, Rüschendorf (2012a,b, 2013a,b) study and compute lower
and upper bounds for certain functionals of a multivariate law. In
comparison with these references, the present article deals with
a very special functional, namely the probability of a joint default.
Moreover, motivated by a financial application, Embrechts et al.
(2005); Embrechts, Puccetti (2006a,b) study the Value-at-Risk
and related measures of a portfolio of risks with unknown copu-
la.
The remaining article is organized as follows: Section 2 recalls
Dobrushin’s Theorem on “maximal coupling” to extract an upper
bound for the probability of a joint default under given marginals
and Section 3 applies the result to CDS data on members of the
Eurozone.

2 An upper bound for the

probability of {τ1 = τ2}
To illustrate the problem, we first assume identical marginal laws,
i.e. τ1 ∼ F , τ2 ∼ F for a univariate distribution function F . In
this case (and only in this case), coupling with the comonotoni-
city copula C(u, v) = min{u, v} indeed maximizes the probabi-
lity of the event {τ1 = τ2}, implying a certain joint default, i.e.
P(τ1 = τ2) = 1. This can easily be seen from a stochastic model
based on the quantile transformation: simply take U ∼ U(0, 1)
and define τ1 = τ2 := F−1(U), where F−1 is the (generali-
zed) inverse of F . Clearly, one obtains P(τ1 = τ2) = 1 and both
default times have the pre-determined marginal law F . Conver-
sely, P(τ1 = τ2) = 1 already implies identical default probabili-
ties, which follows from the fact that

P(τ1 ≤ x)
(∗)
= P(τ1 = τ2, τ1 ≤ x)

(∗)
= P(τ2 ≤ x),

where x was arbitrary and P(τ1 = τ2) = 1 is used in (∗). This
implies that for inhomogeneous marginals, there does not exist
a stochastic model such that the defaults take place together for
sure. Moreover, it raises the following natural question: what is
the dependence structure (i.e. the copula) maximizing the proba-
bility for a joint default when the marginals are fixed? The solution
to this question is given by a result called “maximal coupling” or
Dobrushin’s Theorem in the academic literature, see, e.g., (den
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Hollander, 2010, Theorem 2.10, p. 14). The proof relies on mea-
sure theory. In the sequel, we present the proof of this result in
the special case when the marginal laws have densities satisfy-
ing a mild smoothness condition. In this case, the proof requires
only basic background in Analysis and therefore is hopefully mo-
re accessible to practitioners.
A probability space is constructed supporting two default times
τ1, τ2 with given densities f1, f2 on (0,∞) such that the upper
bound for the joint default probability is attained. To clarify nota-
tion, recall that with Fi(x) :=

∫ x
0 fi(s) ds, i = 1, 2, the probability

of a joint default can be expressed in terms of the copula C and
the marginal laws F1, F2 as

P(τ1 = τ2) =

∫∫
D(F1,F2)

dC(u, v),

D(F1, F2) :=
{

(u, v) ∈ [0, 1]2 : F−11 (u) = F−12 (v)
}
.

In order to derive the result, we need to impose a mild technical
condition on the two densities:

(A) ∃ some n0 ∈ N and sequences {a(n)j }j∈N0 , n ∈ N, parti-

tioning [0,∞) and satisfying 0 = a
(n)
0 < a

(n)
1 < a

(n)
2 < . . .,

limj→∞ a
(n)
j = ∞, and limn→∞ supj∈N{a

(n)
j − a

(n)
j−1} = 0,

such that for all n ≥ n0 on each half-open interval
(
a
(n)
j−1, a

(n)
j

]
the densities f1, f2 are continuous and f1 − f2 has no sign
change.

Assumption (A) is satisfied in all practical cases we can think of.
An example for two densities which do not satisfy hypothesis (A)
is provided in Example 2.1, clearly being pathological in nature.

Example 2.1 (Densities not satisfying (A))
Define the two non-negative functions

f1(x) = 1{0<x<B1} x
∣∣ cos

(
x−1

)∣∣, x > 0,

f2(x) = 1{0<x<B2} x
∣∣ sin (x−1)∣∣, x > 0,

where B1, B2 > 0 are chosen such that f1, f2 are densities, i.e.
integrate to 1. Then f1, f2 are continuous densities on the inter-
vals (0, B1), (0, B2) which have infinitely many points of inter-
section close to zero, hence they do not satisfy assumption (A).

Theorem 2.2 (A model maximizing P(τ1 = τ2))
Denote by C the set of all bivariate copulas and assume that
τ1, τ2 have Riemann-integrable densities f1, f2 on (0,∞) satis-
fying assumption (A).

• One then has:

sup
C∈C

{ ∫∫
D(F1,F2)

dC(u, v)

}
=

∫ ∞
0
min{f1(x), f2(x)}dx =: p. (1)

• Moreover, the supremum is actually a maximum and we can
provide a probabilistic construction for the maximizer. If f1 =
f2 a.e., then p = 1; if the supports of f1 and f2 are disjoint,
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then p = 0. In all other cases we have p ∈ (0, 1) and a maxi-
mizing copula CF1,F2 , which strongly depends on the margi-
nals, is given by

CF1,F2(u, v) =

∫ min{F−1
1 (u),F−1

2 (v)}

0
min{f1(s), f2(s)} ds

+
1

1− p

(∫ F−1
1 (u)

0
f1(s)−min{f1(s), f2(s)} ds

)
×

×

(∫ F−1
2 (v)

0
f2(s)−min{f1(s), f2(s)} ds

)
.

Proof
For the sake of notational simplicity, we assume that the se-

quences {a(n)j }j∈N0 in assumption (A) are given by a(n)j = j/n.
This excludes irrational points of a sign change of f1 − f2. The
general case, however, is derived analogously, only requiring a
more involved notation. We first consider two degenerate cases:

• If the supports of f1 and f2 are disjoint, then obviously we
observe P(τ1 = τ2) = 0, irrespectively of their copula.

• If f1 = f2 a.e., then the distributions of τ1 and τ2 are iden-
tical and the comonotonicity copula min{u, v} provides the
maximum P(τ1 = τ2) = 1.

We define p :=
∫∞
0 min{f1(x), f2(x)}dx, which – excluding the

two degenerate cases from above – is in (0, 1). Moreover, define
the densities

hmin :=
1

p
min{f1, f2}, hf1 :=

1

1− p
(
f1 − p hmin

)
,

hf2 :=
1

1− p
(
f2 − p hmin

)
.

Consider a probability space (Ω,F ,P) supporting the indepen-
dent random variables Hmin ∼ hmin, Hf1 ∼ hf1 , Hf2 ∼ hf2 ,
and X a Bernoulli variable with success probability p. Define

(τ1, τ2) := (Hmin, Hmin)1{X=1} + (Hf1 , Hf2)1{X=0}.

It is now easy to verify that P(τ1 = τ2) = p and

P(τi ≤ x) = pP(Hmin ≤ x) + (1− p)P(Hfi ≤ x)

=

∫ x

0
p hmin(s) + (1− p)hfi(s)ds =

∫ x

0
fi(s)ds = Fi(x),

for i = 1, 2. Left to check is that p is actually an upper bound
for P(τ1 = τ2) across all possible copulas C ∈ C. This can be
observed by discretizing the probability law. Consider a probabi-
lity space (Ω,F ,P) supporting (τ1, τ2) with given marginals and
arbitrary copula C. For each n ∈ N denote the ceiling function
by d·e and

(
τ
(n)
1 , τ

(n)
2

)
:=
(dn τ1e

n
,
dn τ2e
n

)
∈
( 1

n
N
)2
.
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Fix j ∈ N. Since
{
τ
(n)
1 = τ

(n)
2 = j/n

}
⊂
{
τ
(n)
i = j/n

}
for

i = 1, 2, we obtain the inequality

P
(
τ
(n)
1 = τ

(n)
2 = j/n

)
≤ min

{
P
(
τ
(n)
1 = j/n

)
,P
(
τ
(n)
2 = j/n

)}
= min

{∫ j
n

j−1
n

f1(x) dx,

∫ j
n

j−1
n

f2(x) dx
}
.

The piecewise continuity assumption on the densities allows us
to apply the mean-value theorem of integration, which provides
within each

(
(j − 1)/n, j/n

]
some values ξj,n, ηj,n with

1

n
f1(ξj,n) =

∫ j
n

j−1
n

f1(x) dx,
1

n
f2(ηj,n) =

∫ j
n

j−1
n

f2(x) dx. (2)

On the interval
(
(j−1)/n, j/n

]
we have by hypothesis (A) either

f2 ≤ f1 or f1 ≤ f2. By monotonicity of the integral, we have the
case f1 ≤ f2 if and only if

f1(ξj,n) = n

∫ j
n

j−1
n

f1(x) dx ≤ n
∫ j

n

j−1
n

f2(x) dx = f2(ηj,n).

Hence, by defining

xj,n :=

{
ξj,n, f1(ξj,n) < f2(ηj,n)

ηj,n, f1(ξj,n) ≥ f2(ηj,n)
,

we have that

min{f1(xj,n), f2(xj,n)} = min{f1(ξj,n), f2(ηj,n)}. (3)

This implies that

P(τ1 = τ2) ≤ P
(
∩n∈N

{
τ
(n)
1 = τ

(n)
2

})
= lim

n→∞
P
(
τ
(n)
1 = τ

(n)
2

)
= lim

n→∞

∑
j∈N

P
(
τ
(n)
1 = τ

(n)
2 = j/n

)
≤ lim

n→∞

1

n

∑
j∈N

min{f1(ξj,n), f2(ηj,n)}

(3)
= lim

n→∞

1

n

∑
j∈N

min{f1(xj,n), f2(xj,n)}

(∗)
=

∫ ∞
0

min{f1(x), f2(x)} dx,

establishing the claim. Here, (∗) holds due to Riemann-integrability
of x 7→ min{f1(x), f2(x)}. Finally, a straightforward computation
shows that the maximizing copula is of the claimed form. �

Remark 2.3 (The mean value theorem of integration)
In the proof of Theorem 2.2 we made use of the mean value
theorem in (2). The classical version is formulated for continuous
functions on a compact interval, which are therefore bounded.
However, we applied a slight generalization for half-open and
bounded intervals, because we want to allow the densities to ha-
ve poles. For instance, many standard densities, such as cer-
tain Gamma distributions, have a pole at zero. However, this
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required generalization is straightforward. Since we could not
find a reference, we provide a short proof in the sequel: Let
f : (a, b] → [0,∞) be continuous and assume that the integral∫ b
a f(x) dx is finite, however we might have limx↓a f(x) = ∞.

For each n ∈ N we apply the classical mean value theorem on
the compact interval [a + 1/n, b] providing numbers ξn ∈ (a, b]
with (

b− a− 1

n

)
f(ξn) =

∫ b

a+ 1
n

f(x) dx.

Since the sequence {ξn}n∈N is bounded, we find a convergent
subsequence {ξnk}k∈N with limk→∞ ξnk =: ξ ∈ [a, b]. Using
continuity of f we find that

(b− a) f(ξ) =

∫ b

a
f(x) dx,

as desired. Finally, note that if limx↓a f(x) = ∞ we must have
ξ > a, since the integral was assumed to be finite.

Remark 2.4 (Finite time horizon)
Since a derivative contract typically has a finite maturity T , one
might rather be interested in the probability that a joint default
happens during the lifetime of the contract, i.e. one is interested
in the event {τ1 = τ2 ≤ T}. It follows immediately from the proof
above that the probability P(τ1 = τ2 ≤ T ) is maximized by the
same stochastic model (respectively the given copula), and the
upper bound is given by

P(τ1 = τ2 ≤ T ) ≤
∫ T

0
min{f1(x), f2(x)}dx.

3 A Eurozone case study We bootstrap survival probabilities from credit default swaps (CDS)
referring to senior debt issued by certain members of the Eu-
rozone, namely by Germany, Greece, and Portugal. This is ac-
complished by the common market practice of assuming piece-
wise constant default intensities, and iteratively matching market-
observed CDS prices with increasing maturity, as described, e.g.,
in O’Kane, Turnbull (2003). Mathematically, the default times of
Germany, Greece, and Portugal are denoted by τGer, τGre, and
τPor, respectively. For ∗ ∈ {Ger,Gre, Por}, the density of τ∗ is
assumed to be given by

f∗(t) = λ∗(t) exp
(
−
∫ t

0
λ∗(s) ds

)
, t ≥ 0,

λ∗(x) =
5∑
i=1

λ
(i)
∗ 1{t∈[i−1,i)} + λ

(7)
∗ 1{t∈[5,7)} + λ

(∞)
∗ 1{t∈[7,∞)},

where the non-negative default intensities λ(1)∗ , . . . , λ
(7)
∗ , λ

(∞)
∗ are

bootstrapped iteratively from quoted CDS spreads with maturi-
ties 1, 2, 3, 4, 5, 7, 10 years. These densities satisfy hypothesis
(A) of Theorem 2.2. Figure 2 visualizes the survival functions we
obtain using this approach. One observes that F̄Ger > F̄Por >
F̄Gre pointwise, which mirrors the market’s currently prevailing
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opinion that Germany is a solid debtor, an investment into Por-
tuguese debt is risky, and into Greek debt audacious. Note that
this already implies P(τi = τj) = 0 if τi and τj are connected
with the comonotonicity copula, i, j ∈ {Ger,Gre, Por}.
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Fig. 2: Market-implied survival functions for Germany, Greece,
and Portugal. These data are bootstrapped from CDS
quotes published via Bloomberg on December 12, 2012.

Consequently, the probability that Germany defaults jointly with
Portugal (resp. Greece) is naturally bounded from above. To be
precise, the probability that Germany defaults jointly with Por-
tugal is at most 47% in any model that is consistent with mar-
ket CDS quotes. The probability that Germany defaults jointly
with Greece is even bounded from above by 14% in all models
that are consistent with CDS quotes. Figure 3 shows scatterplots
from the “worst case” copulasCFGer,FPor , respectivelyCFGer,FGre ,
which attain these upper bounds. As one can observe, in this
“worst case” model it is even impossible that Germany defaults
before Portugal or Greece.

4 Conclusion Given two default times τ1, τ2 with non-identical marginal laws on
[0,∞), we have illustrated that it is not the comonotonicity copula
that maximizes the probability of the event {τ1 = τ2}, correcting
a dangerous misbelief in the financial industry. Even worse, a
maximizing copula necessarily depends on the given marginal
laws. We have computed an upper bound for the probability of
a joint failure and have shown that this upper bound is sharp. It
is attained by a probabilistic model which we have constructed
explicitly, and for which we could compute the copula – which
highly depends on the given marginals – in closed form.
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Fig. 3: Scatterplots from the market-implied “worst-case” copu-
las which maximize the probability of a joint default of
Germany and Portugal/Greece. The simulation has be-
en achieved based on the stochastic model derived in the
proof of Theorem 2.2, where the required random varia-
bles were simulated via their densities using the obvious
acceptance-rejection algorithms, see, e.g., (Korn et al.,
2010, p. 33) for detailed information on the latter.
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