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Abstract Long credit exposure in some company may be hedged either by
buying CDS protection that triggers at a time point τ when a cre-
dit event with respect to the company is determined, or alterna-
tively by buying put options on the company’s stock price process
{St}t≥0 – at least when the assumption {τ ≤ T} = {ST = 0} is
justified (“equity-jump-to-zero assumption”). Under this assump-
tion, it is explained how the cost for put protection may be decom-
posed into two parts: (1) the cost for CDS protection (pure default
protection) and (2) a remaining part that accounts for potential
gains due to equity volatility (pure gamma). The proposed mea-
surements are model-free, efficient to compute, and can help to
get a feeling for how much default and gamma risk is priced into
a specific put option.

1 The equity-jump-to-zero

assumption

We consider a debt-issuing company whose stock price process
is denoted by {St}t≥0. In general, the stock price St at some fu-
ture time point t is a non-negative random variable. Furthermo-
re, we assume that the market trades credit default swaps (CDS)
referencing on the company, and we denote by τ the unknown
future time point at which a CDS credit event is triggered.
The present article is concerned with the hedging of a credit ex-
posure in the considered company. Obviously, this can be done
by buying CDS protection. Alternatively, since deteriorating cre-
dit risk is also likely to put pressure on the company’s equity, it
is also reasonable to think about hedging one’s credit exposure
by buying put options with underlying {St}t≥0. While the presen-
ted thoughts are mostly model-free, there is one assumption we
need to impose throughout in order to formally link the credit and
equity components of the company: the so-called equity-jump-
to-zero assumption, which reads as follows:

(A) For arbitrary T > 0 we assume that {ST = 0} = {τ ≤ T}.

Intuitively, it means that the stock price is always strictly positive
before τ , it jumps to zero at time τ , and then it stays at zero fo-
rever. The assumption reflects the idea that upon the arrival of τ
the company is bankrupt, so the remaining value of the company
is distributed among the debtors and no value remains for equity
holders. Furthermore, we are not interested in the company any-
more after τ , which is why it is sufficient to assume that St = 0
for all t ≥ τ .
Is assumption (A) realistic? Well, yes and no. In reality, a stock
price process needs not jump to zero upon a credit event. It may
still be positive for quite a while after τ , see Figure 1 for a recent
example (Radioshack Corporation). However, a useful model is
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allowed to abstract from reality as long as it still captures the es-
sential characteristics one is investigating. As we can also see
from the Radioshack Corporation example in Figure 1, the stock
price never recovered from its low level after τ , but stayed on a
very low level for a couple of months before getting ultimately de-
listed (which corresponds to a jump to zero from the perspective
of a put option holder). So on the one hand in this example the
arrival of the credit event and the time when the stock price jumps
to zero do not coincide. On the other hand, between these two
time points nothing spectacular happened. From a practical per-
spective the assumption (A) may still be considered a convenient
assumption because it makes a rigorous and useful mathemati-
cal model possible, without neglecting essential risks.

Fig. 1: Historical stock price process for Radioshack Corporati-
on. The company was delisted in October 2015 at an ul-
timate stock price of about 2 cents per share. The red
line in March 2015, when the stock traded still at about 15
cents per share, indicates the date when the ISDA Deter-
minations Committee determined a CDS bankruptcy cre-
dit event. There is no sudden jump observable in the stock
price process on the date of the CDS credit event. In con-
trast, the stock price process even traded slightly up after
that for technical reasons, and then continuously lost va-
lue over time in a rather smooth fashion.

2 What are the costs for default

protection?

Suppose we have a long exposure in some asset whose value is
dominated by the credit risk of some company (e.g. a bond). We
denote by N the amount we lose on this investment in case of
an immediate default event (i.e. N is our current “jump-to-default
exposure”). We seek to install a hedging position that eliminates
our jump-to-default exposure. We have two ideas on the table
which do this job for us: (1) buying CDS protection referencing
on the company or (2) buying put options on the stock of the un-
derlying company. How can we compare these two possibilities?

2.1 CDS protection costs We denote the time of default by τ , and by P a risk-neutral pricing
measure. Given that, if we buy CDS protection for maturity T with
annualized running CDS spread c, the market price (i.e. the CDS
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upfront) for the respective protection leg is given by

CDS(T ) := (1−R)E[DF (τ) 1{τ≤T}]− c
∫ T

0
DF (t)P(τ > t) dt,

where R ∈ [0, 1] denotes the recovery rate (which is assumed
to be known and constant). We seek the CDS nominal NC such
that in case of an immediate default event the PnL of our CDS
amounts to

NC (1−R− CDS(T ))
!

= N, i.e. NC =
N

1−R− CDS(T )
.

This implies that our total CDS hedge costs for jump-to-default-
neutrality amount to NC · CDS(T ), which equals

N · CDS(T )

1−R− CDS(T )
.

We denote the last expression, divided by the nominal N , by
CCPUN(c,R), i.e.

CCPUN(c,R) :=
CDS(T )

1−R− CDS(T )
.

The acronym “CCPUN” stands for CDS costs per unit nominal.

2.2 Put protection costs The PnL of an American put option with maturity T and strike K
in case of an immediate default amounts toK−PT (K), denoting
by PT (K) the price of the put. Consequently, we need N/(K −
PT (K)) put options in order to hedge our exposure of N . These
cost us an amount of

N · PCPUN(K) := N
PT (K)

K − PT (K)
,

where the acronym “PCPUN” is introduced in an analogous man-
ner as for CDS in the previous paragraph and stands for put costs
per unit nominal.

2.3 Decomposition of put protection
costs

Let us neglect mark-to-market risk, and only consider CDS pro-
tection and put protection from a cash flow perspective. Whereas
our CDS hedge only pays off at τ if τ ≤ T (otherwise there are
only cash outflows), the put may also be exercised before τ with
positive PnL (even though no default takes place). This is illus-
trated in Figure 2, which visualizes the payoff profile of a put.
Assuming absence of arbitrage, the put protection until maturity
T must necessarily be more expensive than the respective CDS
protection1 until T . In particular, we observe that

CCPUN(c,R) ≤ CCPUN(0, R) =
E[DF (τ) 1{τ≤T}]

1− E[DF (τ) 1{τ≤T}]

≤ PCPUN(K) =
PT (K)/K

1− PT (K)/K
.

1If this is not the case, then this is either a striking arbitrage opportunity or a
strong indication that assumption (A) does not hold.
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It is important to notice that the “all-upfront CDS protection cost”
CCPUN(0, R) = CCPUN(0) is independent of R. As K ↘ 0, in
non-pathological situations we have that2

PT (K)

K
−→ ∂

∂K
PT (0) = E[DF (τ) 1{τ≤T}], (1)

so that the put hedge costs PCPUN(K) converge to the maxi-
mal CDS hedge costs CCPUN(0), which are paid when the who-
le insurance is paid upfront (zero CDS running spread). Conse-
quently, the value CCPUN(0) separates the cheaper CDS pro-
tection costs (which depend on the choice of c) and the more
expensive put protection costs (which depend on the choice of
K).
Remark 2.1 (European put)
If the put option was European-style, then (1) would change to

PT (K)

K
−→ ∂

∂K
PT (0) = E[DF (T ) 1{τ≤T}],

which follows immediately from the bounded convergence theo-
rem. Since in the current low interest rate environment we have
DF (τ) ≈ DF (T ) on {τ ≤ T} for short maturities T , for most
practical purposes the difference between American-style and
European-style put options is only of secondary importance.
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Fig. 2: Histogram of the probability distribution of ST (in light
blue). The dotted dark blue line shows the expected va-
lue E[ST ] = 10. The red line visualizes the payoff profile
of a put option with strike 5. While the CDS only triggers
with probability P(ST = 0), the put option has a non-zero
payoff with probability P(ST < 5).

These considerations imply that it is reasonable to define

DT (K) :=
CCPUN(0)

PCPUN(K)
=

E[DF (τ) 1{τ≤T}] (K − PT (K))

PT (K)
(
1− E[DF (τ) 1{τ≤T}]

) ,
MT (K) := 1−DT (K) ∈ [0, 1].

2See the Appendix for an explanation.
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We may interpret DT (K) as the proportion of the put protecti-
on costs that are associated to pure default risk protection, and
MT (K) as the proportion of the put protection costs that are
associated with pure gamma risk protection. By definition, DT

(MT ) is decreasing (increasing) in the strike price. The numbers
DT (K) andMT (K) are model-free measurements that can help
to clarify how much default and gamma risk is priced into a spe-
cific put option. In order to compute them the only thing which is
desired is the distribution function of τ (i.e. default probabilities),
which may easily be extracted from an observed CDS curve.
While obviously both CDS costs and put costs increase in case a
company becomes more distressed, it is a priori unclear how the
proportions DT and MT behave. However, Figure 3 demonstra-
tes the functions DT (K) and MT (K) for three real-world cases
with different levels of creditworthiness – all with similar maturi-
ties. The depicted numbers have been computed within a defaul-
table Markov diffusion model3 that has been calibrated jointly and
successfully to CDS and put prices. Judging from these three ex-
amples, it appears as if not only the total default protection costs
CCPUN(0) increase with decreasing creditworthiness (which is
clearly expected), but also the relative share of default risk pro-
tection DT (K) within the observed put prices increases for at-
the-money strike levels. For far out-of-the-money strike prices
(≤ 20% moneyness), however, the examples show that DT (K)
is not a monotone measure in the creditworthiness in general.
This indicates that the value of DT (K) (or equivalently MT (K))
is highly case-sensitive – which in turn makes a measurement of
DT (K) interesting.

3 Conclusion Under the assumption that the stock price jumps to zero in case
of a CDS credit event it was shown how to compare default risk
hedge costs via put options and default risk hedge costs via CDS
protection. We demonstrated how to split the put hedge costs into
two components, one accounting for pure default risk and the
other accounting for gamma risk. Based on this decomposition,
we proposed a model-free measurement for how much default
risk protection is implicitly contained in a put option price.

Appendix: Justification of (1) Denoting by T[0,T ] the set of all stopping times (w.r.t. market fil-
tration, which is the natural filtration of {St}t≥0) with values in
[0, T ],

PT (K)

K
= sup

η∈T[0,T ]

E
[
DF (η)

(
1− Sη

K

)
+

]
.

We prove the claimed equality by establishing the lower and up-
per bounds separately. The lower bound is obvious:

sup
η∈T[0,T ]

E
[
DF (η)

(
1− Sη

K

)
+

]
≥ E

[
DF (τ) 1{τ≤T}

]
+ E

[
DF (T )

(
1− ST

K

)
+

1{τ>T}

]
≥ E

[
DF (τ) 1{τ≤T}

]
,

3More precisely, the JDCEV model of Carr, Linetsky (2006).
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where the first inequality is obtained by considering the particular
stopping time η = min{τ, T}. In order to derive the more difficult
estimate from above, we need to impose the following assumpti-
on:

(B) In case of a certain default before τ (i.e. conditioned on the
event {τ ≤ T}), it is optimal to exercise the put option at τ .

Remark 3.1 (Intuition of assumption (B))
Assumption (B) says that the magnitude of a potential interest
rate loss induced by exercising the option at some time t, for
which DF (t) is rather low, is negligible compared with the ma-
gnitude of a potential gain induced by the ultimate jump to default
∆Sτ := Sτ− − Sτ of the stock price. Within typical pricing mo-
dels, like defaultable Markov diffusion models, this is an accepta-
ble assumption since the value ∆Sτ often takes a non-negligible
positive value, whereas the range of the function t 7→ DF (t) on
[0, T ] is rather narrow for typical option maturities T (which are
rather short, say T ≤ 2). In practice, however, it might happen
that the equity market anticipates the default time τ earlier than
the actual date on which the ISDA Determinations Committee
determines the CDS credit event, cf. Figure 1. On the one hand,
this provides an incentive to exercise one’s put option earlier than
τ and invest the received cash at the risk-free rate. On the other
hand, in times of low or even negative (risk-free) interest rates
such considerations are at best of secondary importance.

We proceed with the justification, taking assumption (B) for gran-
ted. Let n ∈ N arbitrary. The distribution function F of the random
variable inft∈[0,T ] St satisfies F (0+) := limK↓0 F (K) = F (0)
(since any distribution function has left limits everywhere). Con-
sequently, there exists a Kn > 0 such that

P
(

inf
t∈[0,T ]

St ∈ (0,Kn)
)
<

1

n supt∈[0,T ]DF (t)
.

We define the following two disjoint events:

An :=
{

inf
t∈[0,T ]

St ∈ (0,Kn)
}
, Bn :=

{
inf

t∈[0,T ]
St ≥ Kn

}
.

Notice in particular that An ∪Bn = {τ > T}, so that An ∪Bn ∪
{τ ≤ T} defines a (disjoint) partition of Ω. Furthermore, on the

event Bn obviously DF (η)
(

1 − Sη
Kn

)
+

= 0 for all η ∈ T[0,T ].
Consequently,

E
[
DF (η)

(
1− Sη

Kn

)
+

]
= E

[
1{τ≤T} DF (η)

(
1− Sη

Kn

)
+︸ ︷︷ ︸

≤DF (τ) by (B)

]
+ E

[
1An DF (η)

(
1− Sη

Kn

)
+︸ ︷︷ ︸

≤1

]

≤ E
[
DF (τ) 1{τ≤T}

]
+ P(An) sup

t∈[0,T ]
DF (t)

≤ E
[
DF (τ) 1{τ≤T}

]
+

1

n
.
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The first inequality above relies on assumption (B). Since the
right-hand side is independent of η, we conclude that

sup
η∈T[0,T ]

E
[
DF (η)

(
1− Sη

Kn

)
+

]
≤ E

[
DF (τ) 1{τ≤T}

]
+

1

n
.

We may without loss of generality arrange4 that Kn → 0 as n→
∞, so that we have found one particular null sequence of strike
prices (Kn) satisfying limn→∞ P (Kn)/Kn = E

[
DF (τ) 1{τ≤T}

]
.

Assuming differentiability5 of the function K 7→ P (K) at zero
then yields the claim, because it implies that limn→ P (Kn)/Kn

is invariant with respect to the choice of null sequence (Kn).

References P. Carr, V. Linetsky, A jump to default extended CEV model: an
application of Bessel processes, Finance and Stochastics 10
(2006), pp. 303–330.

4E.g. via replacement of (Kn) by (K̃n), where K̃n := min{Kn, 1/n}.
5From a practical perspective, this assumption is not severe because (a) due

to a lack of observations an assumption on differentiability is required any-
way and assuming non-differentiability at zero would be rather unnatural,
and (b) in typical pricing models empirical observations imply differentiabi-
lity.
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Fig. 3: Decomposition of put protection costs into DT and MT

for three names of different creditworthiness (T ≈ 1.25
years for each name). Top: highly distressed (P(τ ≤ T ) =
58.8%), Middle: moderately distressed (P(τ ≤ T ) =
6.6%), Bottom: not distressed (P(τ ≤ T ) = 0.3%). 888


