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Abstract We consider market bid and ask prices for European call options
on some stock with a fixed maturity and for different strike levels.
It is well–known that these options provide information about the
(risk-neutral) probability distribution of the future stock price. But
how much? In this note we aim at explaining how rich the infor-
mation of the given option data is.

1 Introduction We observe a set of European call option prices on a stock, with
the same maturity T > 0 and for a battery of strike prices 0 ≤
K0 < K1 < . . . < Kn < ∞. The respective market prices are
denoted by C0, C1, . . . , Cn (bid prices) and C0, C1, . . . , Cn (ask
prices), respectively, and satisfy 0 ≤ Ci ≤ Ci for all i = 0, . . . , n.
The observed bid-ask spread corresponds to transaction costs
we face in case we buy or sell the options. We denote the (non-
negative) stock price at maturity T by ST and the price of a risk-
free zero coupon bond with maturity T by DF (0, T ). A typical
task of a financial analyst is to find a solution to the following
problem:

Problem 1.1 (Calibration problem)
Find a probability measure Q so that we ha-
ve the inequalities Ci ≤ Ci ≤ Ci for all i =
0, . . . , n, where

Ci := DF (0, T )EQ[max{ST −Ki, 0}]. (1)

Without loss of generality we may assume DF (0, T ) = 1 for
the remainder of this article, since we can simply rewrite Pro-
blem 1.1 in terms of the prices C̃i := Ci/DF (0, T ) and C̃i :=
Ci/DF (0, T ), respectively. Further, the measure Q typically must
satisfy an additional constraint, namely EQ[ST ] = F (0, T ) for
a given forward equity price F (0, T ). However, this case is in-
cluded in Problem 1.1 by setting K0 := 0 and C0 := F (0, T ).
Classical arbitrage pricing theory implies that the found call op-
tion prices Ci are arbitrage–free in the following sense: under
perfect market conditions1 there exists no portfolio in the risk-
free zero bond, the stock, and the call options, which yields a
risk-free return above the return of the available risk-free zero
coupon bond. By the reverse logic, a solution Q to Problem 1.1

1Short-selling is allowed, no transaction costs (in particular, the options can
be bought and sold at prices Ci, i.e. no bid-ask), etc..
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may be used to infer what the market thinks about the full proba-
bility distribution of ST , provided we believe in an arbitrage-free
market which approximately satisfies the perfect market condi-
tions. In other words, the quoted option prices relinguish partial
information about a probability distribution of ST , which is called
a risk-neutral probability distribution. Any risk-neutral probability
distribution must be viewed as an extrapolation of this partial in-
formation to full information about the probability distribution of
ST – and this extrapolation is by no means unique in general, as
will be illustrated in the sequel.

2 When does a solution exist at all? Assume for a minute that there is a solution Q to Problem 1.1. In
this case, it follows immediately from Ki−1 ≤ Ki and the repre-
sentation (1) that

Ci−1 ≥ Ci, i = 1, . . . , n, (2)

i.e. the sequence Ci of mid call prices is non-increasing. It is
furthermore observed that

Ci−1 − Ci = EQ[max{ST −Ki−1, 0} −max{ST −Ki, 0}]
≤ EQ[ST −Ki−1 − (ST −Ki)] = Ki −Ki−1, i = 1, . . . , n,

(3)

which implies that the slope of the decrease is bounded from
below by −1 ≤ (Ci−Ci−1)/(Ki−Ki−1). Moreover, the function
K 7→ EQ[max{ST −K, 0}] is obviously convex. In particular, this
implies that

−1 ≤ Ci − Ci−1

Ki −Ki−1
≤ Ci+1 − Ci
Ki+1 −Ki

, i = 1, . . . , n− 1, (4)

where the lower bound of −1 on the left hand side follows from
(3). The following lemma states that if a sequence of call prices
Ci is non-increasing with slope greater than −1 and convex, i.e.
satisfies (2) and (4), then there exists always a measure Q such
that the representation (1) is valid.

Lemma 2.1 (A trivial risk-neutral measure)
If C0, C1, . . . , Cn is a sequence of non-negative numbers satis-
fying (2) and (4), then there exists a probability measure Q such
that the Ci can be represented as in (1).

Proof
Recall our assumption DF (0, T ) = 1. Without loss of generality
we assume that K0 = 0. (If not, we simply extend the given se-
quence. More precisely, we letK−1 = 0 and setC−1 to any value
between C0 +K0 (C0−C1)/(K1−K0) and C0 +K0. Notice that
this is possible, since (C1 − C0)/(K1 − K0) ≥ −1 by assump-
tion. Then we shift the whole sequence by one index up, so that
we have a sequence indexed by i = 0, . . . , n + 1, which fits into
the hypothesis of the lemma.) We additionally set Cn+1 := 0 and
Kn+1 =∞. With this definition, we have extended (2) and (4) to

Ci ≥ Ci+1, i = 0, . . . , n,

−1 ≤ Ci − Ci−1

Ki −Ki−1
≤ Ci+1 − Ci
Ki+1 −Ki

, i = 1, . . . , n. (5)
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Therefore, we are able to define the numbers D0 := 1, Dn+1 :=
0, and

Di := −
(
αi

Ci+1 − Ci
Ki+1 −Ki

+ (1− αi)
Ci − Ci−1

Ki −Ki−1

)
, i = 1, . . . , n,

(6)

for arbitrary numbers αi ∈ (0, 1). It is an immediate consquence
of the second line in (5) that 1 = D0 ≥ D1 ≥ . . . ≥ Dn ≥
Dn+1 = 0. Further, we define for i = 0, . . . , n the sequence

K̄i :=

{
Ci+KiDi−(Ci+1+Ki+1 Di+1)

Di−Di+1
, if Di > Di+1

Ki , else
.

It is important to notice that

K̄i (Di −Di+1) = Ci +KiDi − (Ci+1 +Ki+1Di+1),

even for those i with Di = Di+1 (because in this case the last
equation reads 0 = 0, as can be checked easily). It is again a
consequence of (5) that Ki ≤ K̄i ≤ Ki+1 for all i = 0, . . . , n. To
see this, we observe by immediate manipulations that

Ki ≤ K̄i ≤ Ki+1 ⇔ Di ≥ −
Ci+1 − Ci
Ki+1 −Ki

≥ Di+1,

which is true by (5) and the definition of the Di. Now we can
define the measure Q such that ST takes on only finitely many
different values, namely

Q(ST = K̄i) = Di −Di+1 ≥ 0, i = 0, . . . , n.

Obviously, Q is a probability measure, since D0−Dn+1 = 1. We
observe further by a telescope sum argument that

EQ[max{ST −Ki, 0}] =

n∑
j=i

(K̄j −Ki) (Dj −Dj+1)

=

n∑
j=i

(Cj +Kj Dj)− (Cj+1 +Kj+1Dj+1)

−Ki

n∑
i=j

(Dj −Dj+1)

= Ci +KiDi −KiDi = Ci.

Hence, Q is such that the given numbers Ci can be represented
as in (1). �

The numbers Di in the proof of Lemma 2.1 can be interpreted
as digital prices. More precisely, under the constructed solution
Q it holds true that

Di = Q(ST > Ki), i = 0, . . . , n+ 1.

Consequently, the choice of the Di in (6) specifies how much
probability mass the measure Q assigns to each strike bucket.
By virtue of Lemma 2.1 Problem 1.1 may be reformulated in a
simpler form.
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Problem 2.2 (Calibration problem, reformulated)
Find a sequence C0, . . . , Cn of non-negative
numbers satisfying (2) and (4), such that Ci ≤
Ci ≤ Ci for all i = 0, . . . , n.

If we have found a solution C0, C1, . . . , Cn to Problem 2.2, the
proof of Lemma 2.1 immediately provides us with a solution to
Problem 1.1. Problem 2.2 can easily be solved within fractions
of a second by means of linear programming. More precisely, we
propose to solve the following two linear programs:{

minimize
∑n

i=0Ci

subject to: Ci ≤ Ci ≤ Ci, i = 0, . . . , n, A ~C ≤ ~b

}
(LP1)

{
maximize

∑n
i=0Ci

subject to: Ci ≤ Ci ≤ Ci, i = 0, . . . , n, A ~C ≤ ~b

}
(LP2)

The matrix2 A = (Ai,j) ∈ R2n×(n+1) and the vector ~b = (bi) ∈
R2n represent the conditions (2) and (4). The non-zero entries of
A and ~b are given as follows (all other entries are zero):

Ai,j =

{
−1 , 1 ≤ i = j + 1 ≤ n
1 , 1 ≤ i = j ≤ n

,

An+i,j =


−1

Ki−Ki−1
, 1 ≤ i = j + 1 ≤ n− 1

Ki+1−Ki−1

(Ki−Ki−1) (Ki+1−Ki)
, 1 ≤ i = j ≤ n− 1

−1
Ki+1−Ki

, 1 ≤ i = j − 1 ≤ n− 1

,

A2n,j =

{
1 , j = 0

−1 , j = 1
, b2n = K1 −K0.

The idea of the linear program (LP1) (resp. (LP2)) is to find the
admissible mid quotes Ci that are closest to the bid quotes Ci
(resp. ask quotes Ci). They can be solved by the standard Sim-
plex algorithm. For example, this is pre-implemented in MATLAB
as the routine linprog. Both linear programs (LP1) and (LP2)
return a solution to Problem 2.2 (if existent at all), say ~C1 and
~C2. And any convex combination ~C := α ~C1 + (1 − α) ~C2, for
arbitrary α ∈ [0, 1], yields an admissible solution to Problem 2.2.
Figure 1 visualizes these solutions in a real-world example.

3 Solutions with an additional

interpretation

The proof of Lemma 2.1 is constructive. It can be applied to any
solution C0, . . . , Cn of Problem 2.2 in order to yield a solution
Q to Problem 1.1. However, this construction only provides one
particular solution, which is by no means unique. Already from
the proof of Lemma 2.1 we observe that we are free to choose
the αi ∈ (0, 1) in (6), each choice potentially leading to a different
solution. Furthermore, all the constructed solutions specify Q in
such a way that the stock price ST can only take on at most n+1
different values. As mentioned earlier, the probability measure Q

2Notice that the column index j runs through j = 0, . . . , n.
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Fig. 1: Market-observed bid and call strikes, together with three
solutions to Problem 2.2. One is the maximal solution of
(LP2), one the minimal solution of (LP1), and the third is
the mean of the first two.

basically serves as a tool to infer information about the (market’s
opinion about the) distribution of ST . Depending on the specific
application, it might be appropriate to postulate additionally that
a solution Q to Problem 1.1 is such that the implied probability
law of ST satisfies additional properties. This results in a more
difficult problem in general.
For instance, it is often desired that the probability distribution
of ST under Q is absolutely continuous, i.e. there exists a non-
negative function f : [0,∞) → [0,∞) such that Q(a ≤ ST ≤
b) =

∫ b
a f(x) dx for 0 ≤ a ≤ b ≤ ∞. The function f is called the

density of ST . In this case, it follows that the function

C(K) := EQ[max{ST −K, 0}] =

∫ ∞
K

(x−K) f(x) dx

is twice differentiable with C
′′
(K) = f(K) for all K > 0. Similar

to Lemma 2.1, one can show the following.

Lemma 3.1 (A risk-neutral measure with positive density)
If C0, C1, . . . , Cn is a sequence of non-negative numbers satis-
fying (2) and (4) with strict inequalities, then there exists a pro-
bability measure Q such that the Ci can be represented as in (1)
and such that ST admits a strictly positive density under Q.

Proof
In the proof of Lemma 2.1 we choose constants Di in (6) from
the interval [

− Ci+1 − Ci
Ki+1 −Ki

,− Ci − Ci−1

Ki −Ki−1

]
,

for i = 1, . . . , n. If we have strict inequalities in (4), then none of
these intervals is a singleton, so it is possible to choose all the
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Di from the interior of the corresponding intervals. Under this
condition, the results of Neri, Schneider (2012) imply that there
exists a piecewise exponential (in particular positive) density f
on (0,∞) such that

Ci =

∫ ∞
Ki

(x−Ki) f(x) dx, Di =

∫ ∞
Ki

f(x) dx,

for all i = 0, . . . , n. �

For the convenience of the reader, the Appendix briefly outlines
another, even slightly simpler and numerically more robust, den-
sity construction than the one based on Neri, Schneider (2012)
that was mentioned in the proof of Lemma 3.1. The density f =
fD in the proof of Lemma 3.1 is piecewise exponential and de-
pends on the chosen values of theDi. It is shown in Neri, Schnei-
der (2012) to maximize entropy among all densities explaining
the given call (Ci) and digital (Di) prices. Dropping the digital
prices Di, it is furthermore shown in Neri, Schneider (2013) that
there exists a unique density f which is piecewise exponential
and continuous, and explains the given call prices Ci. The latter
density is of the form f = fD for some particular D (i.e. is also
piecewise exponential) and is called the Buchen-Kelly density,
referring to pioneering work by Buchen, Kelly (1996). Intuitively,
maximizing entropy when determining the measure Q (respec-
tively when finding the density fD or f ) means that one only uses
the given option data, but uses no other economic reasoning3.
On the one hand, maximizing entropy is an elegant way to redu-
ce model risk. On the other hand, the resulting densities may be
very unsmooth. In the next section we present examples of such
densities, based on the call option data in Figure 1.
The typical situation in practice is that the distribution of ST under
a solution Q to Problem 1.1 is postulated to stem from a parame-
tric family of probability distributions. In mathematical terms, one
demands that under the measure Q it holds that ST ∼ Fθ, whe-
re {Fθ}θ∈Θ is a family of distribution functions, parameterized by
parameters θ ∈ Rm. This situation happens, for example, if the
stock price process is modeled under Q as a stochastic process
from some parametric family. A typical example for a parametric
law of ST is a mixture of lognormals, see, e.g., Brigo, Mercurio
(2002). In such a parametric setup the calibration problem boils
down to finding parameters θ such that

Ci ≤ Ci(θ) :=

∫ ∞
Ki

(x−Ki) dFθ(x) ≤ Ci, (7)

for all i = 0, . . . , n. This will almost always be a highly non-linear
problem, and it is typically solved by minimizing a non-negative
error functional Err(θ) saytisfying Err(θ) = 0 if and only if θ satis-
fies (7), e.g.

Err(θ) :=
n∑
i=0

max{Ci(θ)− Ci, 0}+ max{Ci − Ci(θ), 0}.

3Entropy-maximization also relies on (restrictive?) assumptions. For example,
the Buchen-Kelly density is always light-tailed so that all moments of ST

exist. In other words, heavy tails never maximize entropy.
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If the obtained minimum equals zero, a solution to Problem 1.1
of the desired parametric form exists. If the minimum is greater
than zero, it depends on the application one has in mind whether
or not the minimizing probability law Q = Q(θ) is an acceptable
approximation or not.

4 How different are possible

solutions?

We provide an example of how different possible solutions to
Problem 1.1 can look. To this end, we reconsider the call opti-
on data of Figure 1, which stem from a real-world example. The
strikes of the observed call options (with a maturity in T = 1.715
years) span a range from 0.5 to 7 USD. With the current stock
price being equal to 2.31 USD, this means that a wide range
from 21.65% to 303.03% moneyness is covered. This is a rat-
her unusual situation, but it means that the given call option data
should provide quite a lot of information about the market’s opi-
nion about the probability distribution of ST . In other words, the
given data specify a solution to Problem 1.1 quite accurately in
the sense that any two solutions Q1 and Q2 are expected to be
quite similar, i.e. Q1 ≈ Q2. Let us check if this is indeed the case.
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Fig. 2: Visualization of call option prices resulting from a JDCEV
model that is fitted so that it provides a solution to Problem
1.1.

First of all, we fit a so-called JDCEV model4 of Carr, Linetsky
(2006) to the given call option data. As Figure 2 shows, this is
possible and the model-implied call option prices Ci provide pro-
per mid quotes. It is interesting to mention that this model implies
a solution Q to Problem 1.1 satisfying Q(ST = 0) > 0, so the law
of ST is not absolutely continuous in this case (but not discrete
either). Second, we carry out the construction from the proof of
Lemma 2.1 with the model prices Ci as input. We end up with
a discrete probability distribution for ST . Concerning the involved

4JDCEV stands for jump-to-default extended constant elasticity of variance.
The JDCEV model is a popular credit-equity model.
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choice of theDi in (6), we apply the convention αi = 0.5 for each
i = 0, . . . , 10. Third, we take the same Di (and the Ci) as in-
put for the algorithm presented in Neri, Schneider (2012), which
yields a maximum entropy density (MED) for ST . This density is
piecewise exponential and discontinuous. Finally, by optimizing
the chosen constants Di using the optimization procedure des-
cribed in Neri, Schneider (2013) we compute the Buchen-Kelly
density for ST , which also explains all given call prices Ci. The
latter is the maximum entropy density when only the prices Ci
(but not the Di) are used as specifying information. All four re-
sulting distribution functions for ST are visualized in Figure 3.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

JDCEV model
discrete law
discontinuous MED
Buchen−Kelly MED

Fig. 3: Visualization of distribution functions for ST under diffe-
rent solutions to Problem 1.1. All four distribution functions
imply precisely the same call option prices.

It is observed that the JDCEV model implies an atom at zero, i.e.
the respective distribution function (black line in Figure 3) has
a jump at zero (to a level of about 0.0225). For all other three
distribution functions zero is a fix point. The distribution functi-
on associated with the discrete probability law (red line in Figure
3) is a step function jumping at all possible values ST can take.
This is clearly the distribution function that sticks out most of the
four functions. Indeed, the distribution functions associated with
the JDCEV model and the two distribution functions arising from
entropy maximization appear to be very similar on the interval
[1, 10]. If one looks closely, one can observe that the distributi-
on function belonging to the Buchen-Kelly MED (magenta line
in Figure 3) is less bumpy than the one associated with the dis-
continuous MED (blue line in Figure 3). On the interval [0, 1],
however, the JDCEV model is quite different from the other dis-
tribution functions. The reason is that the JDCEV model assigns
point mass to zero, whereas the other distribution functions do
not. Intuitively, the other three distribution functions “catch up”
this point mass backlog very quickly, explaining their steeper in-
crease after zero compared with the JDCEV model. The obser-
vation that the four models differ most on the interval [0, 0.5] is
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also intuitive when taking into account the fact that this interval
lies outside the range spanned by the strikes of the given option
data. This corresponds to a range for which information must be
extrapolated under a significant amount of freedom concerning
the distributional assumptions.
As a final remark, let us notice that in a situation where the strikes
of the observed call option data only span a range of, say, 80%
to 120% moneyness, which is not unusual in the marketplace,
the dissimilarity of possible solutions to Problem 1.1 can be hu-
ge. This is simply due to the fact that there is a lot of freedom for
the probability distribution of ST outside the specified moneyness
range. Figure 4 illustrates this by means of a fictitious example.
First, using the Black–Scholes formula5, we compute call option
prices for strike levels ranging from 80% to 120% moneyness.
Second, using the construction from the proof of Lemma 2.1,
we find a discrete probability law yielding the same strike prices.
Third, we run the algorithm of Neri, Schneider (2012) to construct
a (discontinuous) maximum entropy density yielding also the sa-
me strike prices. Finally, we run the algorithm of Neri, Schneider
(2013) to construct a continuous maximum entropy density, the
so-called Buchen-Kelly density, also yielding the same strike pri-
ces. It is observed that all four constructed distribution functions
differ massively outside the moneyness range that is spanned by
the observed options, whereas within this range they are all very
similar.
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Fig. 4: Visualization of four different distribution functions for ST ,
which all imply the same call option prices within a strike
range of 80% to 120% moneyness (this range is indicated
by the dotted vertical lines).

There is also another way to explain this ambiguity. Figure 5 vi-
sualizes the densities corresponding to the three absolutely con-
tinuous risk-neutral probability measures depicted in Figure 4. It
is observed that the discontinuous MED assigns disproportio-
nately much mass to the marginal strike buckets [80, 85] and

5With current stock price S0 = 100, volatility σ = 0.4, interest rate r = 0, and
time to maturity T = 1.
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[115, 120]. Referring to the proof of Lemma 2.1, these probabi-
lity masses are controlled by the choice of the digital prices Di

in (6). In contrast, the continuous Buchen-Kelly MED has been
derived via the algorithm in Neri, Schneider (2013) which opti-
mizes the Di in such a way that a continuous MED is obtained.
The potential range we may choose each Di from in the general
case of the algorithm in Neri, Schneider (2012) is the widest (i.e.
the ambiguity the largest) for the marginal strike buckets, with the
consequences being depicted in Figures 4 and 5. In real-world
applications, it might hence make sense to at least impose mo-
deling assumptions for the values D1 and Dn, which determine
the probability mass outside the observed moneyness range. In
the particular example here, it is possible to assign between 8%
to 70% of the probability mass outside the observed strike range,
without losing the ability to explain the given call prices. Clearly,
how much probability mass we think lies outside the observed
strike range has a strong effect.
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Fig. 5: Visualization of different risk-neutral densities, all yielding
the same call option prices.

5 Conclusion The goal of this article was to convey a feeling for how much
information one can retrieve from observed stock option data.
To this end, it was first explained that a battery of European call
option strikes – if it satisfies certain monotonicity and convexity
conditions – can always be represented as expectation values
with respect to a discrete risk-neutral measure. It was highlighted
how diverse the set of such representing risk-neutral measures
can be.

Appendix: Piecewise linear cdf Although the algorithm of Neri, Schneider (2012), which has be-
en applied before, always returns a density for given call and
digital option prices, the algorithm sometimes runs into numeri-
cal problems. This is because the piecewise exponentiality of the
density is prone to extreme spikes near observed strike prices,
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β3 β2 β1 β0

D3 D2 D2 D1

Fig. 6: Since the intervals [β3, β2] and [β1, β0] are much smaller
than the middle interval [β2, β1], it is impossible to choose
D2 in such a way that (8) holds for all i. The colored ar-
rows indicate possible choices for D2 which do not violate
(8) for i = 1 (red) and i = 2 (blue), but these two ranges
have an empty intersection.

as can be observed, e.g., in Figure 5. In order to obtain a more
stable algorithm, which always returns a numerically convenient
risk-neutral density, one may replace the piecewise exponential
form by a piecewise constant one, at least within the strike range
[K1,Kn]. More precisely, we briefly show how to change the con-
struction in Lemma 2.1 in order to obtain a distribution function
for ST which is continuous on [K1,Kn] (piecewise linear instead
of piecewise constant). We are able to define a density f for ST
under Q on each of the given strike intervals constant as

f
∣∣
(Ki,Ki+1]

(x) =


(Di−Di+1) 1(2 K̄i−Ki+1,Ki+1)(x)

2 (Ki+1−K̄i)
, if K̄i >

Ki+Ki+1

2
(Di−Di+1) 1(Ki,2 K̄i−Ki)

(x)

2 (K̄i−Ki)
, else

,

for i = 1, . . . , n − 1. Obviously, this definition then implies for
i = 1, . . . , n− 1 that ∫ Ki+1

Ki

f(x) dx = Di −Di+1,

1

Di −Di+1

∫ Ki+1

Ki

f(x)x dx = K̄i.

Obviously, this density is piecewise constant (hence the corre-
sponding distribution function piecewise linear and continuous).
However, the density has a hole on the interval [Ki,Ki+1] if and
only if K̄i is not precisely the midpoint of the interval. This raises
the question whether it is possible to choose the Di in such a
way that the K̄i equal the midpoints of the intervals, in order to
eliminate holes. For the sake of a simplified notation we define

βi := − Ci+1 − Ci
Ki+1 −Ki

, i = 0, . . . , n.

For i = 1, . . . , n− 1, simple algebraic manipulations imply that

K̄i =
Ki +Ki+1

2
⇔ Di +Di+1

2
= − Ci+1 − Ci

Ki+1 −Ki
= βi. (8)

Condition (8) shows that its is not always possible to eliminate
holes, because we might encounter a situation where it is im-
possible to place Di−1 and Di symmetrically around βi−1, and
simultaneously place Di and Di+1 symmetrically around βi. Fi-
gure 6 illustrates this problem for i = 2.
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