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Abstract The Buchen-Kelly density maximizes entropy among all risk-neutral

densities that explain observed option prices for a fixed maturity.
Since it is piecewise exponential, the inverse function of the as-
sociated distribution function is given in closed form. This makes
Monte Carlo simulations from the Buchen-Kelly density extreme-
ly efficient via the classical inversion method. Unfortunately, ho-
wever, the Buchen-Kelly density depends critically on the input
option data and tends to be spiky, which is often not desired. We
demonstrate how a deliberate choice of the input option data can
resolve this issue and yield a smooth Buchen-Kelly density.

1 Introduction The motivation for the present note stems from the following ap-
plication. We seek to find a risk-neutral probability distribution for
a bivariate random vector (S7, Rr) describing the value of two
underlyings S and R at a fixed future time point 7" > 0. While the
risk-neutral distributions of both underylings S and Ry can be
retrieved from vanilla option data, there is a priori no informati-
on available about the dependence structure between S and R.
However, in the applications we have in mind this dependence
is very strong, e.g. S may be the ITRXX Main spread and R the
ITRXX Sen Financial spread. A reasonable dependence model
in such a case is hence a copula that results from a small distur-
bance (in a justifiable sense) of co-monotonicity’. When having
constructed such a bivariate model, we seek to carry out (exten-
sive) simulation studies in order to estimate the risk of potential
positions involving both underlyings. In such a simulation study
a sample of (S, Rr) is generated by first simulating a sample
(U, V') from the underlying copula, and then transforming the uni-
formly distributed random variables U, V' to the desired quantities
St, Ry via the classical inversion method, i.e. Sr = Fg ' (U) and
Ry = Fgl(V) with Fg, Fr denoting the univariate distribution
functions of St and R, respectively.

To this end, it is convenient if the univariate distributions of the
underylings are given in such a way that the inverses of the dis-
tribution functions (the inverse cdfs) of St and Ry can be eva-
luated efficiently. Even though there are numerous methods to
infer univariate risk-neutral distributions from option data, unfor-
tunately not many of these approaches provide the inverse cdfs
in the required simple form. For some stochastic price evoluti-
on models, a simulation of the terminal value requires simulati-
on of a whole path, which is too computation-costly and cannot

"We elaborate more on this technique in a future XAIA article.
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be combined with the aforementioned copula-method. For other
models the distribution function of the terminal value is known
in closed form, but the inversion needs to be done numerically
vie Newton’s or bisection methods, which still results in a costly
simulation engine.

The so-called Buchen-Kelly density of Buchen, Kelly (1996); Ne-
ri, Schneider (2012, 2013) is a promising candidate for the de-
scribed task. Besides its nice interpretation in terms of entropy
maximization, it is piecewise exponential, hence its inverse cdf is
given in closed and simple form, so that millions of simulations
can be generated within fractions of a second, as desired. Unfor-
tunately, the Buchen-Kelly density is typically not very smooth.
Even though it is continuous by definition, in practice these den-
sities are often quite spiky. In particular, the algorithm described
in Neri, Schneider (2013) gets as input arbitrage-free call (mid)
prices and spits out the unique Buchen-Kelly density associated
with these. Small changes in the input call prices can result in
dramatic shape changes of the resulting Buchen-Kelly density.
The present note provides practical advice on how to apply this
algorithm in order to obtain smooth densities. The key technique
here is to choose the input call (mid) prices deliberately. If these
prices are computed from some model with a smooth density f,
the Buchen-Kelly algorithm is basically a tool which approxima-
tes f by a continuous, piecewise exponential function under the
side constraint that option prices are matched perfectly. This ap-
proximation can further be improved by enhancing the input data
by additional option prices outside the observed moneyness ran-
ge, that are computed from f.

The remaining article is organized as follows. Section 2 introdu-
ces notations and definitions. Section 3 describes how the input
data for the Buchen-Kelly algorithm should be chosen in order to
obtain a smooth density.

We consider European call and put options on a stock S =
{St }+>0 with fixed maturity 7 > 0. Their respective market prices
in dependence on the exercise strike price are denoted by C'(K),
resp. P(K), in the sequel. We furthermore denote by DF'(t) to-
day’s price of a risk-free zero coupon bond with maturity ¢ > 0.
The fair strike price of an equity forward on the stock S with matu-
rity T, entered into at t € [0, T, is denoted by F'(¢,T). The equi-
ty forward strike price equals the market’s expectation about the
stock price at maturity, i.e. F'(t,T) = EQ[Sr | F;], which implies
that the stochastic process { F'(t, T) }+c(o,7 is @ Q-martingale, cf.
Bernhart, Mai (2015). Troughout, the quantities F'(¢,7") and S;
are assumed to be related via

Sy = F(t,T)e® T l;i;((f)), (1)
with the parameter § > 0 accounting for potential differences bet-
ween F'(0,T") and So/DF(T), which are both observable quan-
tities. It can be interpreted either as a continuous repo margin
or a continuous dividend yield — i.e. a continuous spread on top
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of the risk-free rate that is earned by stock owners®. The option
market prices in general can be represented as

C(K)=DF(T)EY[(Sr — K);], P(K)=DF(T)EY[(K — Sr),].

In the classical Black—Scholes model the martingale { F'(¢, T) }+>0
is a geometric Brownian motion with volatility parameter ¢ > 0,
i.e.

SO e—éT
DF(T)

0'2 0'2
F(t,T) = F(0,T)e” 7 tHoWe = e~ T oWt e 0,7,

with a standard Brownian motion W = {W}};>¢. Introducing the
notation of log-moneyness k := log(K/F(0,T)), the option pri-
ces under the Black—Scholes model assumption are given by

Cps(o,k, S, 8) == T S, <<1>(d+(o, k) — ¢* ®(d_(o, k))),

Pps(0,k, So,8) =7 8, (ek ®(—d_(0,k)) —®(—dy (o, k))),

k :I:U\/T

_U\/T 2

with ® denoting the cdf of a standard normally distributed random
variable. For the sake of notational convenience we follow the
seminal reference Lee (2004) in expressing the Black—Scholes
formula in terms of k instead of K. Due to the assumed relati-
onship (1), any three of the four variables Sy, F'(0,7),d, DF(T)
implies the fourth. Hence, in general the option formula needs to
depend on three of the four variables. The switch from K to &
eliminates one variable (namely F'(0,7)) so that the remaining
formulas only depend explicitly on Sy and §. However, implicitly
the dependence on F'(0,T) is still there, it is only hidden in k£ and
(1).

For given market put and call prices K +— P(K) and K —
C(K), we choose F'(0,7") as the unique root of the function
K — C(K) — P(K) and define the associated implied volatility
smile K — ops(K) implicitly as the unique root of the equation

di(o,k) =

C(K) £ s (ops(K), log <F(§T))SO §). i K > F(0.T),

P(K) = Pgg (UBS(K),log <F(S(,T)>’SO>’ it K < F(0,T).

Section A in the Appendix explains this definition.
3 Buchen-Kelly density For a given battery of call option prices C(K3),...,C(K,) and
a forward value F'(0,7), (Neri, Schneider, 2013, Corollary 5.3)

states that there exists a unique function g with the following pro-
perties:

(@) DF(T) f;?:g(x) (x — K;)dx = C(K;)fori=1,...,n.

(b) gis the density of a probability distribution with mean F'(0, 7).

2The classical Black—Scholes model relies on the simplifying assumption § =
0, which is too restrictive in practice.

3
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(c) g is piecewise exponential, i.e. on each interval® [K; 1, K;]
has the form g(z) = «; €% for certain o; > 0 and 3; € R,
i=1,...,n+1.

(d) g is continuous.

The function g is called Buchen-Kelly density, named after Bu-
chen, Kelly (1996), and is known to maximize entropy among all
functions satisfying (a) and (b). It can be computed along the
iterative algorithm described in Neri, Schneider (2012, 2013).
One weakness of the Buchen-Kelly density is that it depends
critically on the input prices C(K4),...,C(Ky,). Small changes
in these prices may result in dramatic shape changes of the
Buchen-Kelly density, and very unsmooth densities are common-
ly obtained. For instance, the top plot in Figure 1 visualizes a
Buchen-Kelly density for the DAX (German stock index). The
green lines in the background indicate the strike levels K1, ..., K,
for which option prices are given. The input prices C(K1), ..., C(K,)
for the algorithm are the quoted mid prices. One observes that
the density is continuous, so it is the unique Buchen-Kelly den-
sity, i.e. the spiky shape is not the result of bad numerical be-
havior of the algorithm but of the poor choice of mid prices. The
middle plot in Figure 1 visualizes another Buchen-Kelly densi-
ty. The sole difference to the top plot is that the input mid pri-
ces C(Ky),...,C(K,) have been chosen differently according
to the method described below in paragraph 3.1. The density is
obviously much smoother than before, but still has two spikes
near the boundary strike prices K7 and K,,. This issue is resol-
ved in the bottom plot of Figure 1. Here, five additional call prices
with strikes outside the observed moneyness range have been
included. These additional strike prices are indicated by the red
lines in the background. The inclusion of additional call prices de-
viates from the concept of entropy maximization because model
assumptions are necessary for their computation. It is a trade-off
for the sake of smoothness.

3.1 How to choose the input prices?  If the input call prices C'(K3), ..., C(K,) are computed from so-
me density f, then the resulting Buchen-Kelly density g is intui-
tively expected to approximate f. In other words, smoothness of
f is expected to carry over to smoothness of g. Consequently,
in a first step we fit a smooth density f to the observed option
data. To this end, we use the three-parametric SVI model men-
tioned at the end of Section B in the Appendix, which provides
an excellent fit in the illustrated example, see Figure 2. The ob-
tained SVI-density f is also illustrated in the middle and bottom
plots of Figure 1; it is computed from the formula in paragraph
B.2. Apparently, the difference between the SVI-density and the
Buchen-Kelly density is minimal in the bottom plot of Figure 1.
The Buchen-Kelly density, however, has the advantage that its
associated inverse cdf is given in closed form. This enables very
efficient Monte Carlo simulation. In this example, the exact simu-
lation of one million independent samples from the Buchen-Kelly
density only took 0.18 seconds on a standard PC in MATLAB
via the classical inversion method. This is a striking improvement

*Here, Ko := 0 and K1 := cc.
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compared to the effort it would take to invert the SVI-distribution
function (2) numerically.

It was outlined how the Buchen-Kelly algorithm of Neri, Schnei-
der (2012, 2013) may be enhanced by a deliberate choice of
input (mid) call prices in order to retrieve a smooth Buchen-Kelly
density. Furthermore, it was highlighted that the piecewise ex-
ponential form of the Buchen-Kelly density, implying exact and
efficient evaluation of the associated inverse cdf, is a desirable
feature in applications involving extensive Monte Carlo simulati-
ons from the risk-neutral probability distribution.

Market (mid) quotes for puts K — P(K) and calls K — C(K)
are arbitrage-free if and only if there exists a non-negative ran-
dom variable St such that P(K) = DF(T)EQ[(K — S7)4]
and C(K) = DF(T)EQ[(Sy — K),] for all K. The probability
law of St under Q is uniquely determined by either the function
K — C(K) or by the function K — P(K). In particular, the
mean

lim {P (K)K — P(K)}
F(0.T) :=E%[Sr] = DCILS?%) = DF(T) ’

which is the forward equity strike, is uniquely defined. In practice,
however, a typical situation is that the prices K — C(K) are
arbitrage-free, and also the prices K — P(K) are arbitrage-free,
but not put and call prices jointly. This is most obviously seen by
the following check: (St — K)4+ + K = (K — St)+ + St implies
the put-call parity C(K) — P(K)+ DF(T) K = DF(T) F(0,T).
The left-hand side of the last equation in theory must be invariant
with respect to K (because the right-hand side is), but in practice
is not. In the sequel, we are going to show how this problem is
resolved in practice.

In case that C(K) — P(K) + DF(T) K is non-constant, it is im-
possible to find a single random variable St explaining both call
and put prices jointly. Consequently, we must simplify our target
by deciding which market prices we want to explain and which
we do not need to match perfectly with our model. Out-of-the-
money options are traded much more liquidly than in-the-money
options. Consequently, it is (a) more important to replicate tho-
se appropriately, and (b) the information from out-of-the-money
options is more reliable. As a consequence, we simplify our task
by seeking a choice of F(0,T) = EQ[Sr] such that our resulting
model for St perfectly explains the function K — C(K) only on
[F(0,T),00) (the call wing) and K +— P(K) only on [0, F'(0,T)]
(the put wing). A solution F'(0,T) to this problem must necessa-
rily be chosen as the unique (and existing) root of the function
K — C(K) — P(K), as the following lemma shows.

Lemma A.1 (Necessary condition on F'(0,T))
Let F(0,T") be a number in (0, o). There exists a random varia-
ble St with mean EQ[S] = F(0,T) satisfying
C(K) = DF(T)EY(Sy — K)], K € [F(0,T),00),
P(K) = DF(T)E®[(K — Sr)4], K € [0,F(0,T)],



>I<

B Implied volatility

B.1 Risk-neutral cdf

B.2 Risk-neutral pdf

XAIA
INVESTMENT

only if C(F(0,T)) = P(F(0,T)).

Proof
Assuming the existence of a random variable St as claimed, it is
readily observed that

C(F(0,T)) — P(F(0,T)) = DF(T)E%[Sy — F(0,T)] = 0.0

While Lemma A.1 shows that the choice of F'(0,7") is unambi-
guous, it still does not guarantee that we can actually find a ran-
dom variable explaining call and put wing perfectly. A sufficient
condition guaranteeing this is that the function

9

BUK) — P(K)+ DF(T) (F(0,T) - K) ,if K <F(0,T),
(K) := C(K) , else

for K € [0,00), is convex, which can be seen from the put-call-
parity and (Hirsch, Roynette, 2012, Proposition 2.1). For this,
it is sufficient to postulate that C'(F(0,T)) > P'(F(0,T)) —
DF(T'), which in probabilistic terms means that the call-implied
risk-neutral distribution attributes at least as much probability mass
to the interval [0, F'(0,7")] as the put-implied risk-neutral distri-
bution. Interpreting Lemma A.1 in terms of the implied volatility
smile, choosing F'(0,T") as the root of K — C(K)— P(K) is the
only choice that makes the implied volatility smile ops(K’) which
is derived from C'(K) a continuous function, which it must be (cf.
Rogers, Tehranchi (2008)).

Knowledge about the function K — C(K) (or the function K —
P(K)) is equivalent to knowledge about the risk-neutral probabi-
lity distribution of S7 under Q. Moreover, this knowledge is equi-
valent to knowledge about the function K +— opg(K). From this
perspective, the implied volatility smile is just a peculiar way to
characterize the risk-neutral probability law of St analytically.
Because of this it is instructive to collect some facts about the
implied volatility that help to understand its link to the law of S.

The risk-neutral distribution function of St can be written as a
function of ops(.) as

QSr<a)=1- <I><d_ (0Bs(x), k(:p))) @)
+ F(0,7) \/TO'IBS(x) go(d+ (oBs(z), k:(x))), x>0,

where k(x) = log(xz/F(0,T)) denotes the log-moneyness. Re-
garding an interpretation of the last formula, the first summand

1— <I><d_ (oBs(z), k(a:))) equals the probability that a lognor-
mal random variable with volatility parameter opg(x) is smaller

or equal to z, while the second summand represents a correction
term.

Assume that St is an absolutely continuous random variable on
(0, 00). Introducing the function

w(y) = oks(FO.T) ") T, yeR, 3)
6
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it is explained in Gatheral, Jacquier (2014) that the risk-neutral
density, i.e. the density fg,. of ST under Q, is given by

log (z7) +0T
fsr(x) = ;ZJ@(ST <z)= p(1oe (i) ), x>0,

X

where the function* p : R — [0, 00) is given by

p(y) = 9(y) eXp(_( y_ . w(y))2>7

w(y) V2w w(y) 2
_ yw N\ w1 1y w(y)
9(y) = (1‘2w<y>> T4 (@W)*T '

This provides an expression for the risk-neutral density f in terms
of the implied volatility smile K — ops(K).

The paper Lee (2004) derives the asymptotic behavior of o g5 (K)
as K — oo and as K ™\, 0. This behavior is shown to depend
on the number of finite moments of Sy (for the case K — o)
and of 1/Sr (for the case K ™, 0) under Q. As an immediate
corollary from the formulas derived in that reference, it follows
that a'BS(O) = —oo unless all positive moments of 1/S7 exist.
In particular, positive mass at zero, i.e. Q(Sp = 0) > 0, implies
055(0) = —o0. Moreover, it follows that if the density of St un-
der Q has a light tail (i.e. one of the form exp(—/g x) for some
8 > 0as x — o0), then all moments of St exist, and

K
lim sup UBS(K ) =0,
K=ooy [log (F(O,T) )T

i.e. opg(K) grows significantly slower than y/log(K’) with incre-
asing K. For example, this is the case for the entropy-maximizing
Buchen-Kelly density.

The most popular parametric model for the implied volatility smile
is Gatheral’s stochastic volatility inspired (SVI) model. It defines
the total implied variance (3) as a function of the log-strike £ € R
in terms of the five-parametric function

w(k) == a+b(p (= m) + /= m)2+0?),

for parameters a,m € R, b > 0, 0 > 0, and p € (—1,1). Empiri-
cally, this parametric ansatz is well-known to provide an excellent
match to most observed implied volatility smiles in the market-
place. Moreover, Zeliade Systems (2009) describe an efficient
method to calibrate the five involved parameters to given market
quotes.

Unfortunately, sufficient and necessary conditions on the para-
meters in order for the SVI model to imply a proper risk-neutral
density seem to be unknown?®, i.e. the SVI-implied function (2)

“The function p equals the density of log(St/F(0,T)) + 6 T.
®However, several necessary conditions on the parameters can be derived
from results in Lee (2004); Rogers, Tehranchi (2008).

7



>I<

References

XAIA
INVESTMENT

in general is not a proper distribution function. However, the fol-
lowing sufficient (and almost necessary) conditions for a three-
parametric submodel are derived in (Gatheral, Jacquier, 2014,
Theorem 4.2): for the three-parametric specification

0 p ﬂ)

0
a7b7p7m70 = (7 1_/72 » o 0 Py ’
( )= (50-m.Fn L

2
with p € (—1,1),6,¢ > 0, the function (2) derived from the as-
sociated implied volatility smile is a proper distribution function
if

2 2

<<

——————,andp <
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Buchen-Kelly densities for the value of the DAX at 16 De-
cember 2016 retrieved from option data on 4 December
2015. Top: Input option prices are a subset of the quo-
ted mid prices. Middle: Input option prices are SVI-implied
(i.e. slightly smoothed) mid prices. Bottom: Input option
prices are SVI-implied mid prices enhanced by five addi-
tional prices outside the observed moneyness range.
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Fig. 2: Implied volatility smile as observed in the market and as
computed from the fitted densities.
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