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Abstract The so-called Z-spread of a bond is often used as a “quick-and-
dirty” approximation for the bond’s annualized income. However,
it is pointed out that the Z-spread is earned on the bond’s mar-
ket value rather than on the bond’s nominal, which can make a
crucial difference for bond’s trading far away from par. Concer-
ning implications, such an annualized income computation is an
integral part of the negative basis measurement according to the
so-called Z-spread methodology, which should be adjusted ac-
cording to the suggestions of the present note.

1 The proxy formula We start by introducing the required notations.

z : bond’s Z-spread

B : bond’s current clean market value (per unit notional)

N : bond’s nominal

Recall that the Z-spread of a bond is a measure for its excess
return relative to some reference interest rate curve. More pre-
cisely, we denote by DF (0, t) today’s value of a zero coupon
bond with maturity t, so that every cash flow at time t needs to
be multiplied with DF (0, t) in order to compute its net present
value. The discount factors DF (0, t) are typically interpreted as
“risk-free”, which means that they are derived from standard inte-
rest rates bearing minimal credit risk. Corporate bonds typically
bear more credit risk, which means that the sum of all their dis-
counted cash flows is higher than the bond’s market value. In
order to force the value of a bond being equal to the sum of its
discounted cash flows it is common to introduce one additional
parameter into the discount factors. Indeed, a cash flow at time
t is multiplied with DF (0, t) exp(−z t) for some real number z.
The value z which is required in order to explain the bond’s mar-
ket value as the sum of its cash flows, discounted in this way, is
called its Z-spread. If z > 0, this intuitively means that the pre-
sent value of the bond is below the present value of an equivalent
risk-free bond. Furthermore, the value z is sometimes interpre-
ted as the excess return over the risk-free rate which the bond
pays in order to compensate for its credit risk. As a consequence,
it is common to compute the bond’s expected annualized income
as z N . However, we point out below that this is not always a
good idea. First, let us make clear that we define the expected
annualized income of the bond as the difference between the ex-
pected bond’s value in one year, discounted back into today by
multiplication of DF (0, 1), and today’s value B. In particular, this
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implies that a risk-free zero coupon bond with maturity one ye-
ar has expected annualized income equal to zero. The following
proxy formula should be used for computing the bond’s expec-
ted annualized income, given no default and no changing market
conditions during one year:

expected annualized income ≈
(
ez − 1

)
BN. (1)

The approximative nature of Formula (1) has two sources: (a)
the computation of the bond’s value change is based on the Z-
spread philosophy, which is just one possible “accrual model”,
and (b) the precise timing of the coupon payments within the next
year is abstracted from in order to obtain a simplified formula.
Let us collect a couple of remarks regarding Formula (1) before
providing a justification in the next section.

(a) Why Z-spread on market value and not on nominal?
We provide an example showing that the approximation z N ,
which is sometimes applied by market participants, can be
completely wrong, see also the example in the last section.
Consider a zero coupon bond with maturity one year, a cur-
rent price of B = 0.5, and unit nominal N = 1. The rea-
ders will agree that the expected annualized income should
equal DF (0, 1) − B, because the bond accrues up to one
within the next year, if no default occurs. Indeed, Formula
(1) yields precisely this result, because the Z-spread is defi-
ned by the equation e−zDF (0, 1) = B in this case, implying
ez B = DF (0, 1). However, the alternative formula z N may
yield the completely wrong result, depending on the risk-free
rate. Assume for example that the one-year risk-free zero rate
equals 1% so that DF (0, 1) = exp(−0.01) ≈ 0.99005, then

z N = log
(DF (0, 1)

B

)
N = log(1.9801) ≈ 0.683147,

overestimating the desired value 0.99005− 0.5 = 0.49005.

(b) What about the further approximation ez − 1 ≈ z?
If one has no computer at hand, it might be tempting to ap-
proximate the involved exponential function by its first-order
term, i.e. ez − 1 ≈ z. This implies the simplified formula

annualized income ≈ z B N.

However, be aware that this induces a systematic bias, be-
cause ez − 1 ≥ z and strictly “>” whenever z > 0, which is
the usual case.

(c) Implications for negative basis measurement: The artic-
les Bernhart, Mai (2012); Mai (2014) deal with the appropria-
te measurement of the negative basis between a CDS and
an eligible bond. One of the best-known measurement ap-
proaches is the so-called Z-spread method. The latter com-
putes the negative basis as the difference between annuali-
zed income, measured in terms of a Z-spread, and the annu-
alized costs, measured in terms of a CDS spread. However,
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the present note implies that the further is earned on the ba-
sis package’s market value, whereas the latter is paid on the
CDS nominal. The present note points out that the Z-spread
might not always be an appropriate measurement for the an-
nualized income of the basis package, see (a) above. For-
mula (1) shows how the Z-spread method for negative basis
measurement should be revised in order to be more accura-
te: when α denotes the fraction of CDS nominal divided by
bond nominal, and when z denotes the Z-spread on the ba-
sis package1, then the negative basis – measured in terms of
bond nominal – should be computed according to the formula

NB(Z∗)
α := (ez − 1) (B + αupf)− α s,

where upf and s denote the upfront and running coupon of
the respective CDS. Depending on how far the basis package
trades away from par, this formula might differ significantly
from the traditional formula NB(Z∗)

α = z − α s, cf. (Bernhart,
Mai, 2012, Algorithm 2(v)).

(d) Warning: Be aware that Formula (1) assumes that the bond
is plain vanilla, i.e. no sinking fund, no coupon step-up, no
call rights, etc.. However, generalizations of the Z-spread con-
cept to bonds with odd coupons and sinking fund features are
straightforward. Even generalizations to call and optional sin-
king fund features are possible, but more involved, cf. Mai
(2013).

2 Justification of Formula (1) Let us introduce some more notation in order to be able to write
down a formal proof. We introduce a time argument t and denote
the bond’s market price at time t by B(t). Further, we denote by
DF (t, T ) a discount factor at time t for the later time point T > t.
Finally, denote the bond’s coupon/ redemption payment dates by
t1, . . . , tn, and the bond’s clean cash flow2 at time tk by Ck(t).
The bond’s Z-spread z is defined by the equation

B(0) =
∑

k : tk>0

Ck(0)DF (0, tk) e
−z tk .

Furthermore, under the assumption of no changing market con-
ditions (i.e. no default, Z-spread remains constant), the bond pri-
ce until time t will accrue up or down to the value

B(t) =
∑

k : tk>t

Ck(t)DF (t, tk) e
−z (tk−t).

We observe

B(1)DF (0, 1) = ez
∑

k : tk>1

Ck(1)DF (0, tk) e
−z tk

= ez
(
B(0)− C

∑
k : tk>0

tk−1≤1

DF (0, tk) e
−z tk ×

×
(
(1− tk−1) 1{tk>1} + (tk −max{tk−1, 0}) 1{tk≤1}

))
.

1This is defined as the Z-spread on the bond, when the bond’s market price
is assumed to equal B + αupf , cf. (Bernhart, Mai, 2012, Algorithm 2).

2The clean cash flows depend on t and are given byCk(t) = C (max{tk, t}−
max{tk−1, t}) for all k < n and Cn(t) = 1 + C (tn −max{tn−1, t}).
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Now let’s have a closer look at the remaining sum. We denote
the number of equidistant coupon payments per year by n (so
that “annual” means n = 1, “semi-annual” means n = 2, and so
on), and assume the last coupon payment before 0 was at −ε,
where 0 ≤ ε < 1/n. This means that the coupon payment dates
tk satisfying tk > 0 and tk−1 ≤ 1 are of the form 1/n−ε, . . . , (n+
1)/n− ε. Hence, the remaining sum can be written as

Sε,n(z) :=
1

n

n∑
k=1

e−z (k/n−ε)DF
(
0,
k

n
− ε
)

− ε e−z (
1
n
−ε)
(
DF

(
0,

1

n
− ε
)
− e−zDF

(
0,
n+ 1

n
− ε
))
.

Under the assumption of an annual coupon payment frequency
(meaning n = 1), and the assumption that the last coupon has
just been paid at t = 0 while the next coupon is paid precisely
in one year at t = 1 (meaning ε = 0), this sum equals precisely
S0,1(z) = e−zDF (0, 1).
Now let us assume we have at time t = 0 a portfolio consisting
of only the bond, i.e. our portfolio is worth B(0)N at t = 0. The
value of our portfolio at time t = 1, discounted back into t = 0
in order to be compared with B(0)N , consists of the bond’s dis-
counted market value DF (0, 1)B(1)N as well as of all collec-
ted, discounted coupon payments in [0, 1], given precisely by the
value Sε,n(0)C N . Summing up, this means that our total income
in one year equals(

DF (0, 1)B(1) + Sε,n(0)C −B(0)
)
N

=
((
ez − 1

)
B(0) + C

(
Sε,n(0)− ez Sε,n(z)

))
N

≈
(
ez − 1

)
B(0)N,

where the last approximation ez Sε,n(z) ≈ Sε,n(0) is exact for
n = 1 and ε = 0, but constitutes a bias in general. The size of
this bias is visualized in Figure 1. It is observed that the error is
increasing in the number of coupon payments per year.

3 A small, numeric example Inspired by a real-world example, we consider a bond with ma-
turity December 2020, B = 0.58 (bond way below par), C =
9.875% (high coupon rate), yielding a high Z-spread of z = 2070
bps (computed from the Bloomberg screen YAS). We furthermo-
re assume unit nominal N = 1, yielding(

ez − 1
)
BN =

(
e0.207 − 1

)
0.58 ≈ 0.13339.

In contrast, the (wrong) formula z N would yield 0.2070, which is
obviously too high. The first-order approximation z B N ≈ 0.12006
is too low.

4 Conclusion It was pointed out that the product of the Z-spread with the no-
minal is in general not an accurate approximation of a bond’s
annualized income. It was pointed out that it is more accurate to
multiply this value additionally with the bond’s market value. Fur-
thermore, it was shown that the Z-spread z in this computation
serves only as the first-order approximation of the more accura-
te factor ez − 1, which is to be preferred over z – and not much
harder to compute.
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Fig. 1: Visualization of z 7→ ez Sε,n(z) ≈ Sε,n(0) for different n,
ε = 0 (top) and ε = 0.2 (bottom). The discount factors
were assumed to equal DF (t, T ) = exp(−0.01 (T − t))
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