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We seek to model the multivariate distribution of two financial
indices (X, Y") at some future time point, with the following par-
tial information given. From derivatives prices on financial mar-
kets we can infer information about (the market’s opinion of) the
univariate distribution functions F'x of X and Fy of Y. Empiri-
cal evidence and experts’ opinions further justify the assumption
that Y =~ ¢(X) for some monotone function g. Consequently, a
reasonable model for the multivariate law of (X, Y) is to join the
retrieved marginal laws F'x and Fy with a copula function C,,
where the model parameter p < 1 controls the level of deviation
from the case p = 1 representing the base “regression” model
Y = ¢g(X). The present article clarifies in which situations such
a model can be helpful, discusses desirable properties of the
applied copula function C,, and presents a method to retrieve
Fx and Fy in such a way that their inverses are given in closed
form in order to be able to simulate from the resulting model for
(X,Y) efficiently via combining a copula sampling algorithm with
the classical inversion method for the marginals.

The motivation for the present research is to find a bivariate risk-
neutral probability distribution for the pair of two financial indices
that are highly correlated at a future point in time, say (X,Y).
For example, economic reasoning suggests that an equity index
is highly negatively correlated with a credit index associated with
the same regional sector. That is because if stock markets per-
form well, this is likely to coincide with associated credit spreads
becoming tighter, cf. Fung et al. (2008). When looking at his-
torical data, regressing one index on the other is a resonable
and widely applied method to study their functional relationship,
and the deviations from such fundamental relationship. In con-
trast, a risk-neutral distribution is forward-looking by definition,
since it represents the market’s opinion about the values of the
two indices in the future. The market provides partial informa-
tion about such a risk-neutral distribution by quoting prices for
financial contracts whose cashflows depend on the indices’ fu-
ture values. In particular, it is a classical task in Mathematical Fi-
nance to retrieve the univariate marginal risk-neutral distribution
functions F'x and Fy of X and Y from prices for standardized
option contracts referring to either X or Y. Even though there is
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typically no information available to determine the (risk-neutral)
dependence structure between the two indices, economic funda-
mentals justify the use of a very strong dependence between the
two, not to say an almost functional relationship between the two.
Consequently, it is a natural idea to try to regress one marginal
probability distribution on the other to model the pair (X,Y) as
the outcome of a deviation around a fundamental regression re-
lationship Y = g(X), like this is done on historical data. One im-
portant difference is that the univariate probability distributions of
X and Y are known a priori (i.e. are retrieved from option data),
only the dependence structure has to be modeled via an ade-
quate copula function. Akin to the standard historical regression
idea, this copula should intuitively represent a symmetric devi-
ation around a fundamental regression relationship Y = ¢g(X).
This is precisely the idea that is pursued in the present article.
In order to make this copula-regression idea more plastic, the
whole procedure is described along a concrete example involv-
ing an equity index for X (the EuroStoxx) and a highly negatively
correlated credit default swap (CDS) index for Y (the ITRX EUR).
The remainder of this article is organized as follows: In Section
2, we explain the extraction of the marginal distribution functions
Fx and Fy from quoted call option data, and indicate some
necessary approximations for the application of the proposed
method to options on Index CDS. Section 3 discusses the choice
of an appropriate copula class for the joint modeling of (X,Y). A
concrete application of the presented method is finally discussed
in Section 4. Section 5 concludes.

We denote by X the value of a finanical index at a future time
point T'. The market trades European call options with maturity
T and strike prices 0 = Ky < K1 < Ko < ... < K, < oo on this
index, i.e. we can observe market prices for these options. Under
the assumption that these market prices are free of arbitrage,
there exists a distribution function Fx such that the price C'(K;)
of the call option with strike price K; can be written as

C(K;) = DF(T) /I:O(x—Ki)dFX(a:), 1=0,...,n, (1)

where DF(T') denotes the price of a risk-free zero coupon bond
with maturity T'. The function Fx is called a risk-neutral distribu-
tion function for X and is by no means unique. lts interpretation
is that if X has distribution function F'x (under some so-called
risk-neutral probability measure Q), we write X ~ Fx, then the
call prices can be written as expected value of the terminal pay-
off, i.e.

C(K;) = DF(T)E?[max{X — K;,0}], i=0,...,n.

In order to make the choice of F'x unambiguous, the articles
Neri, Schneider (2012, 2013) postulate that dFx (z) = fx(x) dz
for a probability density function fx, and demand that fx maxi-
mizes entropy among all probability densities satisfying the con-
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straint (1), i.e.

fx = argmax ce(x,, . k) / f(z) log (f(x)) dx}

C(Ky,...,K,):= {f:(O, — (0,00) :
dFX(x) = f(z) du satisfies (1)}.

Provided that the market prices are free of arbitrage, it is shown
in Neri, Schneider (2012, 2013) that fx is well-defined, unique,
and piecewise exponential. Further, an iterative procedure —
based on a Newton algorithm — is demonstrated to be reliable
and efficient for the computation of (the piecewise exponential
parameters of) fx. Moreover, fx is called the Buchen-Kelly den-
sity associated with the call option prices K1, ..., K,. Besides
the ability to be well-defined and being reliably computable, the
Buchen-Kelly density additionally has the following two key fea-
tures: (a) its definition in terms of entropy-maximization is in-
terpreted as no additional (model) information - thus no model
mis-specification - being present in fx, and (b) a Monte Carlo
simulation of X ~ fx is highly efficient via the so-called inver-
sion method, see, e.g. Mai, Scherer (2012, Chapter 6.3, p. 234).
There is one practical problem when applying the Buchen-Kelly
algorithm of Neri, Schneider (2012, 2013): the Buchen-Kelly den-
sity fx depends critically on the observed input prices C(K;)
and tends to be quite spiky if the latter are chosen thoughtlessly.
In practice, for each strike price K; the market quotes a bid price
C(K;) and an ask price C(K;), and any choice of mid prices
C(K;) within the respective intervals [C(K;), C(K;)] is an ad-
missible input for the Buchen-Kelly algorithm, provided obvious
no-arbitrage conditions are satisfied'. However, in order to make
sure that the associated Buchen-Kelly density fx is smooth, a
deliberate choice needs to be made. We recommend to gener-
ate the input mid prices C'(K;) from a simple model with smooth
parametric density fy, which is convenient to implement and flex-
ible enough to provide an excellent fit to the observed bid and ask
prices. More precisely, we consider mid prices of the form

[e.@]
C(K;;0) = DF(T) / (x — K;) fo(x)dz, i=0,...,n,
K;
where the parameter(s) 6 are chosen as the minimizer of a non-
negative penalization function P(6) which is strictly positive if
and only if  is such that at least one C'(K;; 0) lies outside its ad-
missible interval [C(K;), C(K;)]. In the present article, we apply
the three-parametric submodel of Gatheral’s five-parametric SVI-
model which is shown to be free of butterfly arbitrage in Gatheral,
Jacquier (2014). It is a simple parametric model for the implied
volatility smile, which can be transformed into a smooth density
function fy because it is guaranteed to be free of butterfly arbi-
trage. The model’s fitting capacity to observed call prices (or,
equivalently, to the observed volatility smile) is incredibly good
and the model is easy to implement because the volatility smile
is by construction given in closed form. Hence, the penalization

'Essentially, the function K; — C(K;) needs to be non-increasing and con-
Vex.
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function P(#) can directly be implemented on implied volatilities
instead of call prices. Having retrieved the mid prices C(K;;6),
we stick them into the Buchen-Kelly algorithm of Neri, Schneider
(2012, 2013) to retrieve fx. By construction, fx is a piecewise
exponential approximation of the smooth density fy, hence itself
quite smooth, at least satisfactorily smooth for practical applica-
tions.

We provide an example for X denoting the value of the Eu-
roStoxx index on March 18, 2016. The distribution Fx is ex-
tracted from option prices quoted on November 26, 2015, with
strikes in the range [2600,4000]. The price quote for the Eu-
roStoxx was 3498.62. Figure 1 displays model-generated implied
volatilities for the SVI and Buchen-Kelly model compared to mar-
ket quotes, as well as the corresponding implied densities. Both
models fit the market quotes very well.

SV fit
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Fig. 1: SVI and Buchen-Kelly fit to EuroStoxx data. Top: Model-
generated implied volatilities compared to market quotes.
Bottom: Implied SVI and Buchen-Kelly densities.

As indicated in the introduction, we seek to apply the Buchen-
Kelly method of the current Section also to X denoting a credit
default swap (CDS) index, because intuitively there is a high cor-
relation between certain stock indices and CDS indices due to
the fact that there is a huge overlap in the underlying companies
of which the index is composed in both market segments. Unlike
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a stock index, unfortunately, a CDS index is not directly a trade-
able asset, and the market does not directly quote call options on
the index. However, the market does quote so-called Payer op-
tions, which can be approximated pretty well by call options on
the CDS index, so that the Buchen-Kelly algorithm may still be
applied. These CDS market-specific technicalities are explained
in the sequel.

Technically, the quoted value of the CDS index equals the so-
called running spread of an associated Index CDS contract. An
Index CDS is an insurance contract between two parties that of-
fers protection on a basket of credit-risky assets. In case of de-
fault of one or more of the referenced assets during the lifetime
of the contract, the protection seller compensates the protection
buyer for the losses suffered. In return, he receives a stan-
dardized premium payment ¢ from the protection buyer, which
is proportional to the remaining nominal in the reference bas-
ket of assets. The value of the Index CDS at the valuation date
t = 0 (from the point of view of the protection buyer) equals the
expected discounted value of protection payments, denoted by
E[DDL(0,T)], less the expected discounted value of premium
payments ¢ - E[DPL(0,T)], which are linear in the premium ¢,
where T'is the maturity date of the contract. The market price of
the contract is not directly quoted in the market, however, has to
be computed from the observed CDS index value, the so-called
running spread 504 of the Index CDS contract, which is defined
by:

~_ E[DDL(0,7)]
0T = RBDPLO,T)

The value of an Index CDS in terms of the observed running
spread is thus computed as

ICDS(0,T) = E[DDL(0,T)] — ¢ - E[DPL(0,T)]
= (so — )E[DPL(0,T)].

The quantity E[DPL(0, T)] is model-dependent. By market con-
vention it is computed from a standard conversion formula based
on simple modeling assumptions as a function of the quoted run-
hing spread s, ;, i.e. the quoted CDS index. Under the additional
assumption that the CDS premium is paid continuously and the
assumption of a constant interest rate r, it is very well approxi-
mated by

1— 67(r+sO’TA/(1fR))T

E[DPL(0,T)] ~ f(sy.7) r+s,7/(1—R)

where R € [0, 1] denotes a market standard recovery rate as-
sumption, e.g. R = 40%.
Index CDS options come in the form of payer and receiver op-
tions. The payer (receiver) option gives its holder the right to en-
ter as protection buyer (seller) into an Index CDS at option expiry
T. Both are usually traded European-style, and involve compen-
sation payments for the proportion of the reference basket that
defaults prior to the option maturity. For ease of calculations, we
5
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assume, however, that the considered options are traded without
this so-called front-end protection.

The strike sX of an index CDS option is typically quoted in terms
of running spread, whereas its price is given in terms of the value
of the underlying Index CDS at 1. The price of a Payer op-
tion with expiry T" and maturity of the underlying Index CDS T
is therefore:

Payer(0,T,T) = E[DF(T)(ICDS(T,T) — (s* — )E[DPL(T, T)])"]
=E[DF(T) (s — ) f (sp7) — (s" — ) F(s")) ],

where s;. ;- denotes the CDS index at the future time T". For a de-
tailed introduction to the valuation of Index CDS and Index CDS
options, see e.g. Martin (2012). For approaches to Index CDS
option valuation involving up-front default compensation, see e.g.
Armstrong, Rutkowski (2009) and Brigo, Morini (2011).

The payoff of the payer option as a function of the random vari-
able s, 7 is

Q(ST,T) = ((ST,T - C)f(STyTA) - (SK - c)f(sK))+7

which, unfortunately, is not precisely a call payoff, as desired for
the Buchen-Kelly method described earlier. However, it can be
approximated satisfactorily well by a call payoff g(s) ~ 2% (s —
sK)*, where ¥ is chosen such that g(s.) = 2% (s, — s%) for
some cutoff level s, > s, i.e.

K _ (8= 0f(s") = (" —o)f(s")

T =

s* — sK

For the remainder of this article, we set s* = = 254 7» twice the
currently quoted CDS index at valuation date. Usually quoted
strikes for Index CDS options lie in a range of [0.5s 7, 1.5 7],
therefore 2s, 7 represents a sensible cutoff point in most cases.
The presented call approximation only differs significantly from
the true payoff for terminal running spreads Sy > s¥, which,
as we will see from the market-extracted density functions, are
highly unlikely under the resulting risk-neutral distribution. Figure
2 displays the exact payoff in comparison to the approximating
call-like payoff.

Summing up, we apply the described Buchen-Kelly algorithm to
the following call approximations on the underlying X := S -

LKPayeT(O, T,T) ~ DF(T)E[(X — s™)*].

Consider exemplarily the value X of the iTraxx Europe 5Y index
on March 18, 2016. The presented method is applied to option
quotes of November 26, 2015, with strike spreads in the range
[40, 105] bps? and a price quote of 69.762 bps for the iTraxx index
itself. Figure 3 shows that both the SVI and Buchen-Kelly model
fit the quoted implied volatilities very well. Further the implied
densities for both models are displayed.

2Running spreads are quoted in basis points (bps): 1 bps = 1,/10000.
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Fig. 2: Approximation (dotted lines) of the exact (solid lines) ITRX
Payer option payoff for three different strikes with call pay-
offs 2% - (s, — s™)*.

Furnished with a robust method for inferring the marginal distri-
butions from quoted option prices, we proceed to the joint mod-
eling of two index prices (X, Y'). Often, a monotonic relationship
between the indices is apparent in historical data, and also a
highly reasonable model from an expert’s point of view. Conse-
quently, we postulate Y = ¢g(X), with ¢g(-) some monotonic func-
tion. We assume for now g increasing. The presented approach
can easily be transferred to decreasing g, cf. Section 3.1.
Knowing the risk-neutral marginal laws Fx and Fy-, the function
g relating the two indices is already determined:

y)=P(X <g'(y) = Fx(g "))

- @
& 9() = Fy (Fx (@)

In reality, historical observations give rise to take into account the
possibility that the pair (X, Y") deviates from this explicit relation
Y = ¢g(X), but that we may interpret these deviations as noise
blurring the postulated relation in a symmetric manner. Resort-
ing to a traditional regression way of thinking, this variation would
be taken into account by introducing a symmetrically distributed
error term e with E[e] = 0, say Y = ¢g(X) + €. In the presented
case, however, the marginal distributions are known, so this ad-
ditive inclusion of an error term is not appropriate, as it obviously
affects the known marginal distribution function of Y. Instead,
the deviation from the functional relation g has to be modeled in
a way that leaves the margins unaltered. Taking this into con-
sideration, we propose to model the joint distribution of (X,Y")
by means of the extracted margins F'x and Fy, and a bivariate
copula C. A copula is a multivariate distribution function with
standard uniform margins. Given C and the two margins, Sklar’s
Theorem states that Fxy(z,y) = C(Fx(x), Fy(y)) defines a
joint distribution function for (X, Y") with the given margins. Sam-
ple pairs (U, Usz) of uniform random variables with given depen-
dence structure from C' can be transformed to sample pairs of
(X,Y) according to the inversion method as

(X,Y) = (F'(Uh), Fy ' (U2)).
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Fig. 3: SVI and Buchen-Kelly fit to iTraxx data. Top: Model-
generated implied volatilities compared to market quotes.
Bottom: Implied SVI and Buchen-Kelly densities.

The assumption of a perfect positive dependence between X
and Y, i.e. Y = g(X), corresponds to the copula C(uy,us) =
min{uj,us}, the so-called comonotonicity copula, see
Mai, Scherer (2012, Example 1.2, p. 5). Therefore, when choos-
ing an appropriate family of parametric copulas for modeling pur-
poses, one should make sure that the chosen class contains the
comonotonicity case. We further want to model the deviations
from the explicit functional relation Y = ¢(X) in a symmetric
way, analogous to the symmetric error term modeling in a stan-
dard regression. To do so, the bivariate copula C' desirably ex-
hibits two types of symmetry, namely exchangeability and radial
symmetry, whose definitions are recalled for the convenience of
the reader.

Definition 3.1 (Exchangeability and radial symmetry)
(@) A random vector (X,Y) is called exchangeable if the proba-
bility distribution of (X,Y") equals that of (Y, X).

(b) A random vector (X,Y) is called radially symmetric about a
point (a1, ag) if the probability distribution of (X —a1,Y —as)
equals that of (a; — X, a9 — Y)).

A copula C is exchangeable (radially symmetric) if samples
(U1,U3) ~ C are exchangeable (radially symmetric about
(0.5,0.5)). It is well-known that C is exchangeable if and only

8
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if C'(u1,u2) = C(ug,u1), and C is radially symmetric if and only
if

C(ur,uz) = C(1 —ug, 1 —ug) +up +ug — 1.

Exchangeabilty means that samples from C' are distributed sym-
metrically about the diagonal, and radial symmetry means that
samples are distributed point symmetrically about (0.5,0.5). Com-
bining these two symmetries yields a third symmetry about the
counterdiagonal U, = 1 — U;. When translating samples
(Uh,Us) ~ C to sample pairs (X,Y) = (Fy'(Uh), Fy H(Us)),
these symmetries about the diagonal and about (0.5,0.5) trans-
late to the following symmetries:

C exchangeable = (X,Y) 4 (g7'(Y), 9(X)),

C radially symmetric =
(X,Y) £ (Fx'(1 - Fx(X)), Fy ' (1 = Fy(Y))).

Both exchangeability and the additional symmetry about the coun-
terdiagonal yield, in terms of (X, Y’), symmetries on certain ‘con-
tour lines’, whose shapes depend on g. Radial symmetry yields a
point symmetry about (Fy*(0.5), Fy-'(0.5)). See Figure 4 for an
illustration how points in [0, 1] are translated from copula sam-
ples to samples of (X,Y’) using the margins Fx, Fy from our

example.
Copula X,Y)
1
A 5000
0.8 L N
_ 4000 P
i \ )
06 | AR W
VL V) 3000
0.4 ) )
o /// 2000
0.2 N 1000

0.01

0.02

0.03

Fig. 4: Translation of copula samples in [0, 1]? lying on certain
contour lines to samples of (X, Y).

In applications, we consider parametric copula families (C),) ,c(0.1]
with C1(u1,u2) = min{uy,us}. Intuitively, we are interested in
modeling the dependence between the highly correlated vari-
ables (X,Y") via a parameter p =~ 1 close to one, representing
a small disturbance from the base case Y = ¢g(X), which is ob-
tained for p = 1. The underyling idea of this approach stems
from a traditional regresson way of thinking, with the sole dif-
ference that the error term is included via a copula in order to
keep the known marginal distributions unchanged. Since the er-
ror term in a traditional regression analysis is modeled symmet-
rically, we also wish to use a copula that satisfies an appropriate
meaning of “error symmetry”, and we believe that copula families
with C, being both exchangeable and radially symmetric satisfy
this demand. The following two copula families both satisfy the

9
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aforementioned demands but exhibit antipodal stochastic behav-
ior:

1. A Gaussian copula to model noise, see Meyer (2009) for
background. Intuitively, Gaussian copulas generate a random
noise symmetric about the base case relation ¥ = ¢g(X).
The magnitude of the noise is determined by the parameter
p. Loosely speaking, almost all samples will violate the rela-
tion Y = ¢(X) but all violations remain within a region around
this relation whose size is controled by p.

2. A Dirichlet copula to model outliers, given by

(1 — p)max{ui,us} +1

2—p
see Mai et al. (2015). Compared to Gaussian copulas, Dirich-
let copulas do not generate noise, but somehow the complete
opposite, namely generate absolutely erratic and wild devia-
tions from the base case relation Y = ¢(X), whose rate of
occurence is controled by p. Loosely speaking, most samples
will satisfy the base case relation Y = ¢(X) but a small set
of samples, whose size is controled by p, violates this relation
dramatically.

Cy(u1,ug) = min{uy, us}

Y

As a side remark, it is also possible to use a convex combination
between Gaussian and Dirichlet copulas in order to model both
noise and outliers. Such a convex combination also satisfies the
desired symmetry properties.

For an illustration of sample pairs from these copula classes see
Figure 5. Figure 6 shows the corresponding pairs (X,Y) in our
example, where we have a strong negative implied relation be-
tween ITRX and EuroStoxx. The necessary modifications to treat
this case are presented in the following.

For functional relations between Y = ¢(X) with decreasing g,
the presented approach is still applicable, with the following mi-
nor modifications:

Inferring the decreasing ¢ from the marginal distribution yields

Fy(y) =P(g(X) <y) =P(X > g '(y)) =1 - Fx(g (1))
& g(z) = Fy' (1 - Fx(x)),
When generating samples of (X, Y"), one can still use the same

copula families as in the increasing case, but (X, Y") are gener-
ated from (U1, 1 — Us):

(X,Y) = (Fx'(Th), Fy ' (1 - Uy))

For (U1,Us) ~ C,, the vector (U, 1—-Us) is distributed according
to the copula®

C'p(ul,uQ) = U1 — Cp(ul, 1-— UQ).
One also retains the desired symmetries: For C, exchangeable,

samples from ép are distributed symmetrically about the coun-
terdiagonal. A radially symmetric copula C,, yields a C, which is

®For Gaussian copulas, one has C, = C_,, i.e. again a Gaussian copula
with parameter —p.

10
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Gaussian copula samples Dirichlet copula samples
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Fig. 5: Samples from a Gaussian copula (p = 0.95) and a Dirich-
let copula (p = 0.9).
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Fig. 6: Translation of these samples to pairs of (X,Y).

again radially symmetric. And finally, for C', exchangeable and
radially symmetric, @p also exhibits both kinds of symmetry.
Furthermore, for p = 1 one obtains (31 = W, the countermono-
tonicity copula that corresponds to Y = ¢(X) for decreasing g,
as desired.

Often one might be tempted to enter into a trade solely based on
historical information, forgetting to take into account that the mar-
ket view on the considered assets might already have changed.
While historical information, alongside with expert opinions, might
give a good initial idea of the dependence structure between the
considered assets, designing a trade based purely on the histor-
ical view neglects the current market opinion which is reflected in
quoted option prices. The method presented in this paper there-
fore offers a more complete way for assessing potential trading
opportunities, respecting also current market views.

In the following we consider a showcase trade on November
26, 2015. It consists of selling out-of-the-money (OTM) March
2016 Payer options on the iTraxx Eur 5Y Index (ITRX) with strike
s% = 100 bps and buying OTM March 2016 Put options with
strike K = 2850 on the EuroStoxx 50 Index (SX5E), such that
the initial PnL of the trade is zero. The current levels of ITRX and
SX5E are 69.762 bps and 3498.62, respectively. Fixing the CDS
nominal at x, the number of Puts to buy is then determined as
y = x - Payer(0,T,T)/Put(0,T). Denoting the values of ITRX
and SX5E respectively at option maturity 7" by X and Y respec-
tively, where 7' is the corresponding CDS maturity, the PnL of

11
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this trade at T is given as follows:

PnL(X,Y,x,y,sK,K) =ymax{K —Y,0}

3
—zmax{(X — o) f(X) — (sK —c)f(sK),O}. ©)

When looking at historical data, the trade looks quite attractive,
see Figure 7. However, the implied relation obtained from quoted
option prices (assuming a perfect negative dependence between
the assets as seems appropriate here), which reflects current
market views, is quite different from the implied relation obtained
from regressing the historical time series.

Implied relations vs. historical data

4000 :
historical
X | ——implied (hist.)
35000 : —— implied (curr.) (|
|

% N
2 N Loss
@ 3000 N
5 ,,,,,,,,,
L

2500¢

2000— ‘ ‘ N T

0.005 0.01 0.015 0.02

ITRX

Fig. 7: PnL areas for selling ITRX Payer options (s® = 100 bps)
vs. buying SX5E Put options (K = 2850), with initial PnL
equal to zero, compared to historical observations. The
implied relations obtained using the presented method
and obtained via regression of historical data are dis-
played as well.

Historical data suggests that a strong negative relation holds for
(X,Y), hence we generate sample pairs (X,Y’) from a Gaus-
sian copula C, with parameter* p = 0.99 and the extracted mar-
gins F'x and Fy . Alternatively, we simulate X ~ Fx and assume
Y adheres approximately to a relation that is found from histori-
cal data via regression, namely

Y =§(X) +e, G(X) =X X°

The parameters A, a are estimated in a classical regression and
e ~N(0,0%), 0 = 1/3,/V[§(X)] are normally distributed resid-
uals®. Comparing the empirical PnL distributions, one finds that
both are asymmetric for the considered trade, although skewed
in different directions, cf. Figure 8. Our proposed method im-
plies that losses occur with a higher probability, but are less pro-
nounced, and gains occur with a smaller probability but are po-
tentially larger, whereas the simulation from Fx and the histor-
ical relation states exactly the opposite. Analogously, the PnL
profiles one obtains from these two methods for the considered
trade example differ significantly.

A parameter p € [0.95,0.99] seems appropriate regarding historical data.
®The variance of the residual terms was chosen such that a similar deviation
from the implied relation was obtained as in our method with Co.99.
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PnL histogram, p=0.99 PnL histogram from historical relation
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Fig. 8: Left: Histogram of PnL distribution for considered trade;
(X,Y) simulated from Gaussian copula Cp.g9 (y-axis cut
off). Right: Histogram of PnL distribution for considered
trade; (X,Y) simulated from Fx and historical relation
(y-axis cut off).

Joint density, p=0.99, max.value=2.5714 Joint density, p=0.9, max.value=0.82995
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Fig. 9: Joint density of (X,Y") for p = 0.99 and p = 0.9 as con-
tour plots, with maximal density value given in title. For
comparison, the perfect negative relation and the borders
of the PnL regions are also displayed. The major part
of the probability mass is assigned to the PnL-neutral re-
gion, centered around the current levels, and spreading
out with decreasing p.

Remark 4.1 (Implicit tail approximations)

As illustrated in Figure 9, the joint distribution assigns most of
the probability mass on the explicit relation and inside the PnL-
neutral region close to the current levels. Therefore the overall
probability of ending up outside of the PnL-neutral region is quite
low, and most of the simulated pairs (X, Y) generate no profit or
loss. However, for an analysis of the considered trade it is crucial
to focus on the probability mass in the tails, where one expects
a non-zero PnL. The found relation g(.) between both indices is
retrieved completely from option data on both indices. In particu-
lar, the tails of F'x and Fy, are extrapolated by the Buchen-Kelly
method outside the observed moneyness range of the given op-
tion data. This implicit extrapolation carries over to a prediction of
g9(X), when X is very large (or low). Consequently, the degree
of model uncertainty within the present analysis is significant and
has to be kept in mind.

Looking again at (3), the PnL at T, one finds that this is heavily
dependent on the choice of the strike prices K and s*. Figure 10
illustrates that many different PnL profiles can be achieved with
the available strike ranges, assuming perfect negative depen-
dence between (X,Y). Note that a special case is K ~ g(s¥),
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where the PnL outcome is almost flat.

PnL curves for different Put strikes, $<=0.01 PnL curves for different CDS option strikes, K=2850
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Fig. 10: Possible PnL curves as functions of ITRX spread, as-
suming a perfect negative relation. Left: ITRX strike s
fixed. Right: EuroStoxx strike K fixed.

Considering the characteristics of the PnL distribution obtained
from samples (X,Y') generated from C,, p < 1, we find the fol-
lowing: Regardless of the chosen strikes, the expectation of the
PnL is zero. For p increasing from 0 to 1, the standard deviation
and the upper tail percentiles of the PnL distribution (correspond-
ing to gains) decrease, whereas both VaR and CVaR of the re-
spective trade increase. This is in line with the “spreading out” of
probability mass observable for decreasing copula parameters p,
cf. Figure 9. Figure 11 illustrates the behavior of VaR/CVar and
the 99-/95-/90-percentiles of the PnL distribution of our consid-
ered trade with respect to changes in the copula parameter p:
For p = 0.9 for example, in 1% of all cases one loses ~ 1.3%
of the CDS nominal or more. On the gains side respectively, in
1% of all cases one earns ~ 1.7% of the CDS nominal or more.
We found that for the considered trade, the empirical PnL dis-

Sensitivity of VaR/CVaR w.r.tp Sensitivity of gain percentiles w.r.t.p
0 —T——————— = === 35
— N—o0
—— VaRyg, |
E? -1 VaRgey, 5
£ < _ i
g —_— VaRgo% 8 2.5H gg percen?:e
2 _J|._ _cval —— 95-percentile
@ 2 Poome g 2H —— 90-percentile
o CVaRygy, <
€ g~ ~CVaRy,, 2 L5
x 5]
I 8 1t
2 b5
O -4 2 o
=0 £ 0.5¢ T
©
O ~
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Copula parameter p Copula parameter p

Fig. 11: Sensitivity of VaR/CVaR (left) and 99-/95-/90-percentiles
of PnL distribution (right) with respect to copula parame-
ter p for our trade example (K = 2850, s = 100 bps).

tribution is asymmetric. This generalizes in the following way:
When selling® ITRX options, the PnL distribution is asymmetric
for K # g(s%), where the asymmetry gets more pronounced for
larger values of |s% —g~!(K)|. For g~ '(K) > s, asin our trade
example, one has a higher probability for losses than gains, but
possible losses are mostly moderate, whereas the probability for
gains is smaller, but gains are potentially larger (expressed in %
of CDS nominal). For g~ (K) < s, the opposite holds.

®For the case of buying ITRX options against SX5E Puts, the opposite state-
ments hold.
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In the light of these characteristics of the PnL distribution, each
trader can choose the strikes I, s’ to reflect his or her preferred
PnL profile and set up the trade accordingly.

5 Conclusion We presented an approach for modeling the joint distribution of
two correlated indices (X, Y') using market information. Margins
are extracted from quoted option prices using a robust method
that combines the benefits of having a smooth density with closed-
form evaluation of the inverse distribution function. The joint dis-
tribution is then obtained by combining the extracted margins
with a bivariate parametric copula model C,, which desirably
exhibits exchangeability and radial symmetry, and contains the
comonotonicity copula as a limiting case. With a quick inversion
method for the marginal distributions at hand, one can gener-
ate a large number of sample pairs (X, Y’) from copula samples
(U1,U) ~ C, using the quantile transform, which can be used,
for example, to identify and analyze trading opportunities involv-
ing options on two closely correlated financial indices.
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