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Abstract The equity forward F (0, T ) with maturity T is defined as today’s
risk-neutral expectation of a stock price at time T . If arbitrage-
free prices P (K) and C(K) for European put and call options
with maturity T are observed for different strikes K, the equi-
ty forward can be retrieved from the put-call parity. In particu-
lar, F (0, T ) is invariant with respect to different risk-neutral pri-
cing measures which explain observed option prices, i.e. it is a
model-free quantity. More precisely, F (0, T ) is given by the un-
ique root of the (in practice partially) observed function K 7→
C(K) − P (K). If only American put and call option prices are
observed, the lack of a put-call parity makes it more difficult to
retrieve F (0, T ) in an unambiguous way from the observed op-
tion data. In particular, the unique root of K 7→ C(K) − P (K)
in general is no longer equal to the equity forward. The present
article investigates whether American put and call prices also de-
termine the quantity F (0, T ) unambiguously. Unfortunately, this
seemingly simple “yes or no”-question appears to be non-trivial
and open, and the present investigation is not able to answer it.

1 Introduction Throughout this article we denote a stock price process by S =
{St}t≥0 and a deterministic, risk-free, continuous discounting ra-
te by r(.). Furthermore, we denote by δ(.) ≥ 0 a continuous rate
accounting for proceeds from stock possession, either through
dividends or through stock lending. Within this setup, arbitrage
pricing theory suggests that for any risk-neutral pricing measure
Q we have that

F (0, T ) := EQ[ST ] = S0 e
∫ T
0 r(t)−δ(t) dt, T ≥ 0. (1)

In other words, the so-called equity forward with maturity T , de-
noted F (0, T ), is independent of Q, i.e. does not depend on the
stochastic behavior of the stock, except for its drift rate r(.)−δ(.).
While S0 is observable and r(.) is bootstrapped from interest rate
sensitive derivatives, the rate δ(.) - and hence the equity forward
F (0, T ) - is a priori an unobservable quantity. However, it beco-
mes observable when European put and call options with diffe-
rent maturites are observed, as will be explained in the sequel.
We denote by C(K) and P (K) the observed market prices for
a call option and a put option with maturity T and strike K on
the stock S. Assuming that these prices are arbitrage-free and
the options are European-style, there exists a (not necessarily
unique) risk-neutral pricing measure Q such that

C(K) = e−
∫ T
0 r(t) dt EQ[(ST −K)+],

P (K) = e−
∫ T
0 r(t) dt EQ[(K − ST )+]. (2)
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From these representations it is straightforward to derive the so-
called put-call parity, which reads

C(K)− P (K) = e−
∫ T
0 r(t) dt

(
F (0, T )−K

)
. (3)

The function f(K) := C(K) − P (K) is strictly decreasing with
unique root F (0, T ) by (3). In practice, the function f is observed
on a grid K1 < K2 < . . . < Kn which is reasonably fine around
the root F (0, T ), so that a linear interpolation of observed va-
lues provides a satisfying approximation of f , hence of F (0, T ).
Consequently, F (0, T ) is essentially an observed quantity and
the rate δ(.) may be read off from (1) under knowledge of S0,
F (0, T ), and r(.). For instance, if European options are obser-
ved for several maturities T1 < T2 < . . . < Tm, then δ(.) may be
specified in a piecewise constant manner so that (1) is satisfied
for each T ∈ {T1, . . . , Tm}.
Now what if the observed prices C(K) and P (K) correspond to
American-style options, which is the usual case in practice? In
this case, the put-call parity (3) needs not hold and the argument
above to read off F (0, T ), respectively δ(.), from observed quan-
tities breaks down. In particular, the root of the function f is no
longer given by F (0, T ) in general.
The remainder of the article is organized as follows. Section 2
reviews prominent literature dealing with the pricing of American-
style options, while Section 3 explains why it is difficult to learn
about δ(.) when only observing American-style option prices.

2 American options A nice survey of different perspectives on American-style options
is found in Broadie, Detemple (2004), from which we briefly recall
general representations. Because of the right to exercise before
maturity, the American-style call and put option prices may be
written as suprema1 over stopping times as

C(K) = ess sup
η∈T [0,T ]

{
EQ

[
e−

∫ η
0 r(t) dt (Sη −K)+

]}
,

P (K) = ess sup
η∈T [0,T ]

{
EQ

[
e−

∫ η
0 r(t) dt (K − Sη)+

]}
,

where T [0, T ] denotes the set of all stopping times with respect
to the market filtration taking values in [0, T ]. These formulas are
very intuitive, in particular when compared to their European-
style counterparts (2). There exists a second representation for
American-style calls and puts, the so-called early exercise premi-
um representation, which decomposes them into a sum of their
European-style counterpart and an early exercise premium. Sin-
ce it is educational, we carry out the derivation for the put in the
sequel. Denoting by τp the optimal stopping time for the put opti-
on, we make the following assumption:

(AP) There is a function Ep : [0, T ]→ [0,∞] such that

τp = inf{t > 0 : St ≤ Ep(t)}.
1The supremum of measurable functions in general needs not be measurable,

e.g. f := 1A for a non-measurable set A equals the supremum of the
functions fB := 1B , B ⊂ A measurable (easy to check). This fact requires
the technical notion of the essential supremum in the call and put formulas.

222



The function Ep is called exercise boundary for the put option.
In words, this assumption means that it is optimal to exercise the
put option if the stock price falls below the (ex ante unknown)
exercise boundary. Lemma 1 in the Appendix of Detemple, Tian
(2002) shows that Assumption (AP) is satisfied in a large family
of diffusion models and Jacka (1991) shows that is satisfied in the
Black-Scholes model. However, in a general, model-free context
we need to formally make Assumption (AP) without verification in
order to proceed2. Furthermore, the following argument requires
the assumption that the stock price trajectories t 7→ St can have
no upward jumps. Given this and Assumption (AP), and denoting
the market price of the put option with strike K at time t ∈ [0, T ]
by Pt(K), consider the following trading strategy, cf. Carr et al.
(1992):

(0) Buy one American put option at t = 0 for the price P0(K)
(assuming S0 > Ep(0)).

(1) At the first time t1 when St1 < Ep(t1), the put is exercised
and we receive its intrinsic value K − St1 . With this money,
we can finance to put the amount K into the risk-free bank
account and short-sell one stock.

(2) At the next time t2 > t1 when St2 ≥ Ep(t2), we liquidate
our existing position and buy one American put option for the
amount Pt2(K) ≥ K−St2 . Under the assumption that t 7→ St
does not exhibit upward jumps, it holds that Pt2(K) = K −
St2 . Furthermore, our current portfolio wealth is

K e
∫ t2
t1
r(s) ds − St2 −

∫ t2

t1

δ(t)St e
∫ t2
t r(s) ds dt,

where the last summand corresponds to dividend earnings
we miss due to our shortselling investment. Hence, the port-
folio rebalancing (i.e. buy the put and liquidate existing port-
folio) costs us precisely

K − St2 −
(
K e

∫ t2
t1
r(s) ds − St2 −

∫ t2

t1

δ(t)St e
∫ t2
t r(s) ds dt

)
=

∫ t2

t1

(
δ(t)St −K r(t)

)
e
∫ t2
t r(s) ds dt.

(3) We wait for the next time point t3 at which the stock crosses
the exercise boundary from above and proceed like in (1),
then we wait for the next crossing from below and proceed
like in (2), and so on.

The wealth process Wt of this strategy at some arbitrary time
point t ∈ [0, T ] is obviously given by

Wt = max{Pt(K),K − St}

−
∫ t

0

(
δ(s)Ss −K r(s)

)
e
∫ t
s r(u) du 1{Ss≤Ep(s)} ds.

2A separation of the real line into two connected parts corresponding to “exer-
cise” or “continuation” appears natural on first glimpse. However, how to
make sure that a separation into three connected parts corresponding to
“exercise”, “continuation”, and “exercise if an independent coin toss yields
heads” is suboptimal? Think of Neyman Pearson theory, in which randomi-
zed tests are optimal in a certain sense!
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The discounted portfolio wealth process needs to be a martinga-
le under Q, so that

P0(K) = EQ

[
e−

∫ T
0 r(t) dtWT

]
= e−

∫ T
0 r(t) dt EQ

[
(K − ST )+

]
+ EQ

[ ∫ T

0

(
K r(s)− δ(s)Ss

)
e−

∫ s
0 r(u) du 1{Ss≤Ep(s)} ds

]
.

Consequently, the American-style put price is decomposed into
the sum of a European-style put price and an early exercise pre-
mium. Since we know that the American-style put price is grea-
ter or equal to the European-style put price, the early exercise
premium term must be non-negative. In particular, we can learn
from this fact a trivial bound for the exercise boundary, namely
Ep(t) ≤ max{K r(t)/δ(t), 0}, which is an intuitive bound that
becomes infinity (hence trivial) for positive r(t) and δ(t) ↓ 0. In
particular, we observe that the American put option is not exerci-
sed at a time point t for which r(t) ≤ 0.
The analogous derivation for the call option relies on the following
assumption:

(AC) There is a function Ec : [0, T ]→ [0,∞] such that

τc = inf{t > 0 : St ≥ Ec(t)}.

Under Assumption (AC), the same logic as for the put option im-
plies

C(K) = e−
∫ T
0 r(t) dt EQ

[
(ST −K)+

]
+ EQ

[ ∫ T

0

(
δ(s)Ss −K r(s)

)
e−

∫ s
0 r(u) du 1{Ss≥Ec(s)} ds

]
,

where Ec : [0, T ] → [0,∞] denotes the exercise boundary for
the call option. The call exercise boundary satisfies Ec(t) ≥
K r(t)/δ(t), which shows that the call is never exercised if δ(.) ≡
0, which is a well-known fact.
As the more involved representations of American-style options
suggest, implying the probability distribution of the underlying
stock price from observed option prices is much more difficult
than in the case of European-style options. In theory, if the func-
tion K 7→ C(K) of European call options is observed, so is the
probability law of ST . In particular, ifK 7→ C(K) is twice differen-
tiable, the second derivative equals the density of ST . In particu-
lar, the expectation of ST , i.e. the forward F (0, T ), is observable.
This fact is no longer true if C(K) corresponds to American-style
call options, as can easily be seen by the following example.

Example 2.1 (K 7→ C(K) does not determine F (0, T ))
Assume that r ≤ 0 and δ ≥ 0 are constant, and dSt = St (r −
δ) dt behaves deterministically. Then C(K) = (S0 − K)+, and
there is no chance to observe δ, or the expected value of ST , only
from the function K 7→ C(K) = (S0 −K)+ - intuitively because
the time T never occurs in the rationale of optimal option exe-
cution. In contrast, in the same example optimal put option exe-
cution is at T , by the complementary nature of put and call, and
the smallest K for which P (K) = 0 equals F (0, T ). Hence, in
this example the forward F (0, T ) is observable from K 7→ P (K)
(and K 7→ C(K)).
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It is very difficult to construct a continuous-time pricing model
that implies closed formulas for American-style call and put opti-
ons. In the following paragraph 2.1, we construct one non-trivial,
but quite academic, model of this form. Even though the model
is quite simple, the American-style pricing formulas are already
quite nasty compared to their European-style counterparts.

2.1 An American option example We consider quite a simple stochastic stock price model, which
allows to compute American-style option price formulas in closed
form. To this end, we assume that r(t) ≡ r ∈ R and

St := S0 e
(r+λ−δ) t 1{τ>t}, t ≥ 0,

where τ is assumed to be an exponential random variable with
rate λ ≥ 0. Due to the lack-of-memory property of the expo-
nential law, {1{τ>t}}t≥0 is a continuous-time Markov chain that
changes its state only once at τ . This implies that the natural fil-
tration of {St}t≥0, which is assumed to be the market filtration, is
given by

Ft =
{
∅,Ω, {τ > t}, {τ ≤ t}

}
.

Lemma 2.2 (American-style option prices)
Let K > 0. The American-style call option price is given by
C(K) = (S0 −K)+, if r + λ ≤ 0, and for r + λ > 0 by C(K) =

(S0 −K)+ , δ > 0 and S0
K ≥ UC(

S0 e
−δ T −K e−(r+λ)T

)
+

,
(
δ = 0

)
or
(
δ > 0 and S0

K ≤ LC
)

(
S0

(
δ S0

(r+λ)K

) δ
r+λ−δ −K

(
δ S0

(r+λ)K

) r+λ
r+λ−δ

)
+

, else

,

where

UC := max
{1− e−(r+λ)T

1− e−δ T
,
r + λ

δ

}
,

LC := UC ·min
{

1, e−(r+λ−δ)T
}
.

The American-style put option price is P (K) = max{A,B,C},
with

A := λK

∫ T

0
e−(r+λ) t dt+

(
K e−(r+λ)T − S0 e−δ T

)
+
,

B :=

K e−r T
(

1− e−λT
)

, r ≤ λ
eλT−1

λK
r+λ

(
r

λ+r

) r
λ , else

,

C :=

{
K e−r T − S0 e−δ T , r ≤ 0

D , else
, where

D :=


K e−r T − S0 e−δ T , δ > 0 and S0

K ≥ UP
K − S0 ,

(
δ = 0

)
or
(
δ > 0 and S0

K ≤ LP
)

K
(
r K
δ S0

) r
δ−r − S0

(
r K
δ S0

) δ
δ−r , else

,

and

LP := min
{1− e−r T

1− e−δ T
,
r

δ

}
, UP := LP ·max

{
1, e−(r−δ)T

}
.

Proof
See the Appendix. �
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3 The equity forward As mentioned earlier, the unique root K∗ of the function K 7→
C(K) − P (K) equals the equity forward F (0, T ) in the case of
European-style options. Also in the case of American-style opti-
ons, K∗ exists and might serve as a convenient source of infor-
mation to approximate the required model quantity δ(.). The early
exercise premium representations of American-style call and put
options allow us to represent the equity forward F (0, T ) in terms
of K∗ as

F (0, T ) = K∗ − EQ

[ ∫ T

0

(
δ(s)Ss −K∗ r(s)

)
e
∫ T
s r(u) du×

×
(
1{Ss≥Ec(s)} + 1{Ss≤Ep(s)}

)
ds
]
. (4)

Consequently, the (unobserved) forward F (0, T ) and the obser-
ved root K∗ differ by an expectation value that can be negative
or positive or zero in general. In particular, the explicit example
in paragraph 2.1 may be used to see this.

Example 3.1 (F (0, T ) > K∗ and F (0, T ) < K∗ possible)
In the example of paragraph 2.1, suppose S0 = 100, T = 3.5,
and denote byK∗ the unique root of the function f(K) = C(K)−
P (K). If we set the parameters to r = 0.1, δ = 0, and λ = 0.2,
then we findK∗ = 127.663 < 141.9068 = F (0, T ). Further, if the
parameters are chosen as r = −0.01, δ = 0.09, and λ = 0.05,
then K∗ = 84.976 > 70.4688 = F (0, T ). Summarizing, in gene-
ral K∗ 6= F (0, T ) and we may encounter the case K∗ > F (0, T )
as well as K∗ < F (0, T ).

Formula (4) at least shows that the observable root K∗ typical-
ly lies somewhere “in the region” of F (0, T ), since the involved
expectation value is usually small compared to K∗ and F (0, T ).
The observable root K∗ can be bounded as follows.

Lemma 3.2 (Bounds on K∗)
Let C(K) and P (K) denote arbitrage-free prices of American-
style call and put options, and let K∗ satisfy C(K∗) = P (K∗).
Then K∗ is bounded according to

F (0, T ) min
t∈[0,T ]

{
e−

∫ T
t r(s) ds

}
≤ K∗ ≤ S0 max

t∈[0,T ]

{
e
∫ t
0 r(s) ds

}
.

Proof
Denote τP and τC the optimal stopping times for the put and the
call with strike K∗ and maturity T , respectively. Then,

0 = C(K∗)− P (K∗) = E
[
e−

∫ τC
0 r(s) ds

(
SτC −K∗

)
+

]
− E

[
e−

∫ τP
0 r(s) ds

(
K∗ − SτP

)
+

]
≤ E

[
e−

∫ τC
0 r(s) ds

(
SτC −K∗

)]
(suboptimal put exercise)

≥ E
[
e−

∫ τP
0 r(s) ds

(
SτP −K∗

)]
(suboptimal call exercise)

.

These two estimates imply the bounds

E
[
e−

∫ τP
0 r(s) ds SτP

]
E
[
e−

∫ τP
0 r(s) ds

] ≤ K∗ ≤
E
[
e−

∫ τC
0 r(s) ds SτC

]
E
[
e−

∫ τC
0 r(s) ds

] .
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Since the discounted stock price has decreasing expectation by
the supermartingale-property, we obtain the claimed bounds for
K∗ via estimating the supermartingale’s expectation at τP (at τC )
by the expectation at T (at 0). �

The bounds in Lemma 3.2 are sharp in the sense that one can
construct an example in which K∗ equals the lower bound and
in which it equals the upper bound. Furthermore, Lemma 3.2
implies an observable upper bound for F (0, T ) in terms of K∗
and r(.). However, it does not give any information about a lower
bound on F (0, T ). There is one trivial situation, in which we do
observe information on a lower bound of F (0, T ).

Example 3.3 (Special (pathological) case)
If P (K̃) = 0 for some K̃ ∈ (0,∞), and hence for all K ≤ K̃,
it follows that min{St : t ∈ [0, T ]} ≥ K̃ almost surely, hence
F (0, T ) = E[ST ] ≥ K̃ as well. Unfortunately, however, the ob-
served function K 7→ P (K) of put options usually does not have
a root in (0,∞) in practice.

It appears to be an interesting open question whether the func-
tion δ(.) is model-free, like this is the case for European-style
options. More concretely, do the current stock price S0 and the
functionsK 7→ C(K) andK 7→ P (K) of American-style call and
put prices for all strikes but one fixed maturity T uniquely determi-
ne the value δ (when assuming δ(.) ≡ constant)? An equivalent
question is: can we construct two stock price models with same
inital stock price S0 but different values δ that imply precisely the
same American-style call and put prices for all strikes and fixed
maturity T?

4 Conclusion Prominent literature dealing with the pricing of American-style
options has been reviewed. Furthermore, it has been demons-
trated that the problem of determining the equity forward from
observations of American-style put and call option prices is high-
ly non-trivial, unlike in the case of European-style options.

Appendix: Proof of Lemma 2.2 Obviously, the only non-deterministic stopping time with respect
to the market filtration is τ , but min{τ, T} is clearly a suboptimal
strategy for the call option. Hence, C(0) = S0 and for K > 0 we
distinguish the following cases, introducing the notation f(t) :=
S0 e

−δ t − e−(r+λ) tK:

(1) δ = 0:

(1.1) r + λ = 0:
Obviously, C(K) = f(0)+.

(1.2) r + λ 6= 0:
We see f

′
(t) < 0 if and only if r + λ < 0, so that

C(K) =

{
f(0)+ , if r + λ < 0

f(T )+ , if r + λ > 0

(2) δ > 0:

(2.1) r + λ ≤ 0:
The function f(t) is decreasing, so C(K) = f(0)+.
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(2.2) 0 < r + λ < δ:
The function f(t) is decreasing for t ≤ t∗ and increasing
thereafter, where

t∗ :=
log
(K (r+λ)

δ S0

)
r + λ− δ

.

Furthermore,

t∗ > 0 ⇔ r + λ < δ
S0
K
,

which implies

C(K) =

{
max{f(0), f(T )}+ , r + λ < δ S0

K

f(T )+ , else
.

Since gT (x) := (1−exp(−xT ))/x is a decreasing func-
tion in x ≥ 0,

r + λ

δ
≤ 1− e−(r+λ)T

1− e−δ T
.

Furthermore, f(T ) ≥ f(0) if and only if

S0
K
≤ 1− e−(r+λ)T

1− e−δ T
.

Summarizing,

C(K) =

{
f(T )+ , S0

K ≤
1−e−(r+λ)T

1−e−δ T

f(0)+ , else
.

(2.3) r + λ = δ:
Obviously, C(K) = f(0)+.

(2.4) r + λ > δ:
The function f(t) is increasing for t < t∗ and decrea-
sing thereafter, where t∗ is the same as in case (2.2).
Furthermore, we have

t∗ > 0⇔ r + λ > δ
S0
K
,

t∗ < T ⇔ r + λ < δ
S0
K
e(r+λ−δ)T ,

which implies

C(K) =


f(0)+ , r + λ ≤ δ S0

K

f(T )+ , r + λ ≥ δ S0
K e(r+λ−δ)T

f(t∗)+ , else

.

Putting together all cases, we end up at the claimed formula.
When summarizing the cases, it is helpful to make use of the
relation

r + λ ≥ δ ⇔ r + λ

δ
≥ 1− e−(r+λ)T

1− e−δ T
,
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which is true for r + λ > 0 (and δ ≥ 0), since gT (x) from case
(2.2) is decreasing in x ≥ 0.
For the put option, the stochastic stopping rule min{τ, T}may or
may not be optimal. We denote the expected, discounted payoff
under the strategy min{τ, T} by A and see

A = EQ

[
e−r min{τ,T} (K − Smin{τ,T})+

]
= EQ

[
1{τ≤T} e

−r τ K
]

+ EQ

[
1{τ>T} e

−r T
(
K − S0 e(r+λ−δ)T

)
+

]
= λK

∫ T

0
e−(r+λ) t dt+

(
K e−(r+λ)T − S0 e−δ T

)
+
.

In addition to this possible strategy every determinstic stopping
time t ∈ [0, T ] is an element of T [0, T ]. Hence, P (K) equals the
maximum of A and

sup
t∈[0,T ]

{
EQ

[
e−r t (K − St)+

]}
= sup

t∈[0,T ]

{
K e−r t

(
1− e−λ t

)
+
(
K e−(r+λ) t − S0 e−δ t

)
+

}
= sup

t∈[0,T ]

{
max

{
K e−r t

(
1− e−λ t

)
, K e−r t − S0 e−δ t

}}
= max

{
sup
t∈[0,T ]

{
K e−r t

(
1− e−λ t

)}
, sup
t∈[0,T ]

{
K e−r t − S0 e−δ t

}}
.

We denote the two inner suprema by B and C, respectively, and
observe

B =

K e−r T
(

1− e−λT
)

, r ≤ λ
eλT−1

λK
r+λ

(
r

λ+r

) r
λ , else

.

For r ≤ 0, C is obviously maximized at T , while for r > 0 we
have C = D, which we can compute by distinguishing several
cases, denoting f(t) := K e−r t − S0 e−δ t:

(1) δ = 0:
Obviously, f(t) is decreasing, so D = f(0).

(2) δ > 0:

(2.1) 0 < r < δ:
The function f(t) is increasing for t < t∗ and decreasing
thereafter, where

t∗ :=
log
(
δ S0
r K

)
δ − r

.

Furthermore, the maximum t∗ is within (0, T ) if and only
if

S0
δ

r
e(r−δ)T < K < S0

δ

r
.

This implies

D =


f(0) , K ≥ S0 δr
f(T ) , K ≤ S0 δr e

(r−δ)T

f(t∗) , else

.

999



(2.2) r = δ:
The function f(t) increases (decreases) ifK < S0 (K >
S0), so that

D =

{
f(0) , K ≥ S0
f(T ) , else

.

(2.3) r > δ:
The function f(t) decreases for t < t∗ and increases
thereafter, where t∗ is the same as in case (2.1). Fur-
thermore,

t∗ > 0 ⇔ K > S0
δ

r
,

which implies

D =

{
f(T ) , K ≤ S0 δr
max{f(0), f(T )} , else

.

It remains to check what happens in the case K >
S0 δ/r. Like in case (2.2) of the call option, it follows that

r

δ
≥ 1− e−r T

1− e−δ T
.

Furthermore, we observe that

f(T ) ≥ f(0) ⇔ S0
K
≥ 1− e−r T

1− e−δ T
.

Summarizing,

D =

{
f(T ) , S0

K ≥
1−e−r T
1−e−δ T

f(0) , else
.

When summarizing the cases for D, it is helpful to make use of
the relation

r ≥ δ ⇔ r

δ
≥ 1− e−r T

1− e−δ T
,

which is true for r > 0 (and δ ≥ 0), and follows from decreasing-
ness in x ≥ 0 of the function gT (x) from case (2.2) of the call
option.
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