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Abstract This is a survey of methods proposed in the literature and the
marketplace regarding the pricing of index CDS options. The
challenges of the topic are highlighted, and the heavy assumpti-
ons on which common formulas rely are pointed out.

1 Introduction and notation Formally, we work on a filtered probability space (Ω,F , (Ft),P)
satisfying the usual hypotheses, where Ft denotes all informa-
tion available to market participants at time t and P denotes a
risk-neutral pricing measure (under which the discounted versi-
ons of all tradable assets are (Ft) martingales). For simplicity,
discount factors are assumed to be deterministic and denoted by
DF (t, T ) throughout1. An index credit default swap (index CDS)
is an insurance contract between two parties. The insurance buy-
er makes periodic premium payments to the protection seller. In
return, the insurance buyer is compensated by the protection sel-
ler for losses occuring in a reference basket of credit-risky assets
during the lifetime of the contract. More precisely, denoting the
number of assets in the reference basket by d and the default
time of asset k in the basket by τk, which is assumed to be an
(Ft)-stopping time, the relative number Lt of defaulted assets in
the basket at time t, and the remaining nominal Nt at time t, are
given by

Lt =
1

d

d∑
k=1

1{τk≤t} ∈ [0, 1], Nt = 1− Lt, t ≥ 0.

The protection buyer pays a quarterly coupon c at each IMM date
during the contract life time on the remaining nominal. We denote
the last IMM date before settlement of the contract by t0, and
the IMM dates during the contract lifetime by t1, . . . , tN , with tN
being at the same time the maturity of the contract. If the index
CDS is settled at tE this means that t0 ≤ tE < t1 < . . . < tN .
Denoting the index CDS running coupon by c, the present value
at time t of the sum over all (clean) cash flows to be made by the

1One should think of them as being given in terms of a reference short rate rt

via DF (t, T ) = exp
(
−
∫ T

t
ru du

)
.
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protection buyer (the discounted premium leg) is given by

c ·DPL(t, tN ) := c ·
∑
i : t<ti

(ti −max{t, ti−1})DF (t, ti)Nti︸ ︷︷ ︸
coupon payment

+
ti −max{t, ti−1}

2
DF (t, ti) (Nmax{t,ti−1} −Nti)︸ ︷︷ ︸

≈ accrued coupon upon default(s)

.

The term in the second line above is just an approximation of
the aggregated accrued coupon payments to be made in case
of observed defaults during ti−1 and ti. It vanishes if no default
is observed in the respective period and is based on (i) the ass-
umption of all default times occuring in the middle of the interval
[max{t, ti−1}, ti] (so-called midpoint rule) and (ii) the assump-
tion of all accrued coupon payments being made at the end of
each period. Upon default of one asset in between ti−1 and ti the
protection buyer receives at the end of the period ti the compen-
sation payment (1−Ri)/d per unit of nominal, where Ri ∈ [0, 1]
denotes the recovery rate of the asset i. For the sake of simpli-
city it is assumed that R1 = . . . = Rd =: R for a constant R in
the sequel, i.e. all recovery rates are assumed to be non-random
and identical to all names in the equally weighted basket. Conse-
quently, the present value at time t of the default compensation
payments to be made by the protection seller (the discounted
default leg) is given by

DDL(t, tN ) := (1−R)
∑
i : t<ti

DF (t, ti) (Lti − Lmax{t,ti−1}).

The value of the index CDS contract for the protection buyer at
time t is hence given by

ICDS(t) = E[DDL(t, tN ) | Ft]− cE[DPL(t, tN ) | Ft].

Assume for a moment that tE = 0, i.e. the CDS settles imme-
diately. At inception of the contract the value ICDS(0) has to be
paid by the protection buyer to the protection seller (if it is ne-
gative, the protection buyer receives money), and it is called the
upfront payment of the index CDS. The coupon rate c satisfying
ICDS(0) = 0 is called index CDS running spread and deno-
ted by s0. Furthermore, for later reference we define st as the
unique root of the equation ICDS(t) = 0 for all t ≥ 0, which
is well-defined for all t < τ[d] := max{t1, . . . , td}, i.e. before all
names in the basket default. It is given by

st =
E[DDL(t, tN ) | Ft]
E[DPL(t, tN ) | Ft]

, tE = 0 ≤ t < τ[d]. (1)

If tE > 0, i.e. the index CDS settles in the future, it is also called
a forward index CDS, and the quantity

s0,tE :=
E[DDL(tE , tN ) | F0]

E[DPL(tE , tN ) | F0]
.

is called the forward index CDS running spread, which equals to-
day’s market-expected index CDS running spread for a forward
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index CDS settled at tE . Similarly, we may define a stochastic
process st,tE for all 0 ≤ t < τ[d] as the unique root of the equa-
tion ICDS(t) = 0, explicitely denoting the dependence on the
settlement date. Clearly, st,0 = st.
It is market convention that index CDS with immediate settlement
tE = 0 are quoted2 in terms of their running spread s0, while the
coupon c is standardized, e.g. to 100 bps. In order to compute
the corresponding index CDS value/ upfront payment ICDS(0),
one needs to compute

ICDS(0) = (s0 − c)E[DPL(0, tN )]. (2)

Since the involved expectation value is model-dependent in ge-
neral, but a price agreement of both contractual parties requires
a common basis, it is market convention to compute E[DPL(0, tN )]
in the conversion formula (2) as a function of s0, i.e. f0(s0) :=
E[DPL(0, tN )], as:

(a) Assume that τ1 = . . . = τd =: τ and that τ has an exponen-
tial distribution with rate λ > 0.

(b) Choose λ such that ICDS(0) = 0 under assumption (a),
when the coupon is given by the input spread s0, i.e. c =
s0, and discount factors are obtained from a battery of ISDA-
defined swap rates by standard bootstrapping routines.

(c) With λ obtained from (b), f0(s0) = E[DPL(0, tN )] is compu-
ted under the assumption (a).

For later reference we also define the functions ft for t > 0 via
ft(s0) := E[DPL(t, tN )], which are defined in precisely the sa-
me way as above, only replacing t = 0 by arbitrary t ≥ 0. An
efficient approximation for the function ft is given by

ft(s0) ≈
1− e−

(
r+

s0
1−R

)
(tN−t)

r + s0
1−R

, (3)

which relies on the assumption of continuous CDS coupon pay-
ments and a flat short rate rt ≡ r used for discounting all cash
flows via DF (t, T ) = exp(−r (T − t)).

2 Index CDS options An index CDS option settled at t = 0 is a financial contract pro-
viding its holder the right, but not the obligation, to enter as pro-
tection buyer into a (forward) index CDS at option expiry tE > 0,
which is at the same time the settlement date of the underlying
index CDS. The option holder specifies a strike index CDS run-
ning spread s(K) at which the underlying index CDS can be sett-
led, even though the then prevailing index CDS running spread
stE ,tE might be higher than s(K). More clearly, in view of the mar-
ket conversion formula (2), upon exercise of the option at time tE
the option holder has to pay the upfront (s(K) − c) ftE (s(K)) on
the full nominal3 N0 = 1, rather than (stE ,tE − c) ftE (stE ,tE ) on

2Similarly, forward index CDS are quoted in terms of their forward index CDS
running spread s0,tE .

3Notice that N0 is the remaining nominal in the basket at option settlement
t = 0. It is assumed here that all names in the basket are still alive at t = 0.
If not, the nominal of the contract simply has to be adjusted in all formulas.
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the then prevailing remaining nominal NtE , which would be the
upfront of a regular (non-forward) index CDS at time tE – provi-
ded not all assets in the basket have defaulted until tE , in which
case stE ,tE is not defined. By convention, an index CDS option
always trades no-knockout meaning that its holder is compensa-
ted for defaults prior to tE , i.e. receives the payment (1−R)LtE ,
if the option is exercised4. Consequently, the model-free value of
the option equals

ICDSO(0) := E

[
DF (0, tE)

(
(1−R)LtE

+ 1{τ[d]>tE}
{

(stE ,tE − c) ftE (stE ,tE )NtE

− (s(K) − c) ftE (s(K))
})

+

]
. (4)

Notice that all pricing formulas presented in the next section are
simplifications from the general formula (4) which rely on more or
less (un)realistic assumptions. The latter are required, because a
direct evaluation of formula (4) within a model capturing all desi-
red risks involved in an index CDS option contract is challenging
without resorting to time-consuming Monte Carlo engines.

2.1 Pricing Presupposing the standard assumption of deterministic interest
rates, which makes the discount factor DF (0, tE) non-random,
the remaining challenges in the evaluation of the general formula
(4) are as follows.

(i) Noticing that {τ[d] > tE} = {LtE < 1}, two random objects
appear under the expectation in (4), and in theory they are not
stochastically independent. These are LtE and stE ,tE . Unfor-
tunately, it is not straightforward to single out one of these two
objects in a separate expectation value, because they are not
linearly combined.

(ii) A bottom-up model for both quantities based on d correla-
ted default intensity processes, which would be the canonical
and most intuitive ansatz, is not very feasible, since it is al-
most impossible to evaluate the expectation value (4) without
time-consuming Monte Carlo algorithms due to the high di-
mensionality.

(iii) Appealing to the well-known single name CDS option case,
the market is used to think of the major driver of randomness
stE ,tE as a lognormal random variable. Similarly, the stocha-
stic object LtE is the main driver of randomness in so-called
CDO tranche contracts, for which numerous efficient pricing
models exist. However, these two structurally different model
types cannot easily be combined in a joint model for both,
without giving up a lot of practical viability.

There exists some literature tackling this challenging pricing is-
sue. Armstrong, Rutkowski (2009) provides a very reader-friendly

4It might happen that a default occurs before expiry but stE ,tE < s(K). In this
case, exercise of the option only makes sense if the default compensation
payment exceeds the upfront payoff loss.
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and rigorous derivation of standard pricing formulas and market
conventions, and the approach is identical to the one in Brigo,
Morini (2009, 2011). In particular, an explanation for the simp-
ler formula of Pedersen (2003), relying on additional simplify-
ing assumptions, is included, and it is justified how a market-
conventional, simple Black-type formula is obtained as an ap-
proximation of the more rigorous formulas. The approaches of
Jackson (2005) and Martin (2012) are different and have to be
discussed separately. All mentioned references have in common
that their goal is to impose a lognormality assumption for the
spread stE ,tE in order to derive Black-type formulas, while the
“disturbing quantity” LtE is treated with different levels of careful-
ness by imposing convenient assumptions or introducing tricky
measure-changes during the derivation.

2.2 Derivation of Black-type formulas We distinguish between simple approaches which ignore the default
compensation term LtE completely, and such approaches which
take this term into account – at least in a simplified way.

2.2.1 Approaches ignoring default compensation

The simplest way to get rid of the disturbing random variable LtEAssumption 1: LtE = 0

is to assume LtE = 0, i.e. to assume that there will be no default
until expiry of the option. This simplifies pricing massively, since
we are left with essentially only one random object being the
spread stE ,tE . More precisely, the pricing formula simplifies to

ICDSO(0) = DF (0, tE)×

× E
[(

(stE ,tE − c) ftE (stE ,tE )− (s(K) − c) ftE (s(K))
)
+

]
.

Using standard measure-changing techniques inherited from the
single-name CDS option case, it is further possible to rewrite the
latter formula in terms of two expectation values as

ICDSO(0) = DF (0, tE)E[DPL(tE , tN )]×

× Ē
[(

(stE ,tE − c)−
(s(K) − c) ftE (s(K))

ftE (stE ,tE )

)
+

]
, (5)

where the second expectation is taken with respect to a measu-
re P̄ under which {st,tE}t∈[0,tE ] is a martingale. For mathematical
details, the interested reader is referred to Mai (2014). Formula
(5) may be evaluated numerically under the assumption of a log-
normal distribution for the random variable stE ,tE . However, this
is not yet a Black formula because of the function ftE . Never-
theless, formula (5) allows to evaluate the two involved expec-
ted values separately. For the first expectation, required are only
default probabilities, which are extracted by the standard ISDA-
model from the forward index CDS running spread s0,tE . For the
second expectation, required is only a model for the martingale
process {st,tE}t∈[0,tE ] for which a geometric Brownian motion,
hence a lognormal law for stE ,tE , is canonical.
The market typically quotes prices for index CDS options in termsAssumption 2: no-upfront trading

of implied Black volatilities, which are computed by an even simp-
ler formula than (5), which relies on the assumption that the un-
derlying forward index CDS trades no-upfront (which is not the
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case in the marketplace, of course). This means that the forward
index protection buyer has to pay stE ,tE ftE (stE ,tE ), which has
to be compared with the payments s(K) ftE (stE ,tE ) that would
have to be made in case of an index CDS option exercise. Con-
sequently, it can be shown that formula (5) is replaced by

ICDSO(0) = DF (0, tE)E[DPL(tE , tN )]×

× Ē
[
(stE ,tE − s

(K))+

]
. (6)

Similar to formula (5), formula (6) allows to evaluate the expressi-
ons E[DPL(tE , tN )] and Ê

[
(stE ,tE−s(K))+

]
separately. For the

first expectation, required are only default probabilities, which are
extracted by the standard ISDA-model from the observed forward
index CDS running spread s0,tE . For the second expectation, re-
quired is only a model for the martingale process {st,tE}t∈[0,tE ]

for which a geometric Brownian motion, hence a lognormal law
for stE ,tE , is canonical, leading to a Black-type formula. The lat-
ter formula is used by the market in order to convert prices to
implied Black volatilities.

2.2.2 Approaches with default compensation

We briefly sketch the derivation of Armstrong, Rutkowski (2009),
which basically coincides with the one of Brigo, Morini (2009,
2011). These approaches avoid the assumption LtE = 0 of the
previous paragraph. Although the mathematical derivation is es-
sentially analogous to the single-name CDS option case, the
economic interpretation appears a lot more awkward in the multi-
name case, so we sketch the logic in the sequel, pointing out the
numerous necessary assumptions made.
First of all, it is natural to assume that the market filtration (Ft) in-Assumption 1: subfiltration structure

cludes the natural filtration of the indicator t 7→ 1{τ[d]≤t}, because
the market participants observe defaults. Consequently, we may
think of Ft as being generated by this information and a disjoint
“rest information”, which we denote by Ht. We take further for
granted the assumption P(τ[d] > t |Ht) > 0 almost surely for all
t. Since the event {τ[d] > t} is not contained in Ht by construc-
tion, the latter assumption is rather natural and seems to be not
too restrictive. It is required later on in order to be able to gua-
rantee positivity of the process t 7→ E[DPL(t, tN ) |Ht], so that it
can be used as a numeraire. The resulting change of numeraire
will help us to get rid of the disturbing indicator 1{τ[d]>tE} in for-
mula (4).
The second assumption5, which is imposed in order to simplifyAssumption 2: simplified payoff

the payoff in formula (4), is

ftE (s(K)) ≈ ftE (stE ,tE )NtE ≈ E[DPL(tE , tN ) | FtE ],

on the event {τ[d] > tE}, where these quantities are well-defined.
Notice that the second approximation is relevant because the

5It is precisely this assumption, which makes technical problems due to an
upfront trading of index CDS disappear. In the single-name case we do not
make this assumption and, consequently, end up with a technical difference
between zero-upfront traded CDS and upfront-traded CDS, see Mai (2014)
for details.
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function ftE computes the premium leg in a simplified way ba-
sed on the single-name standard ISDA model, which needs not
be consistent with the computation of E[DPL(tE , tN ) | FtE ] wi-
thin a given multivariate model for the default times (τ1, . . . , τd).
Furthermore, this assumption is clearly critical since it equates
the constant ftE (s(K)) with a random quantity that is most likely
a decreasing function of the index CDS running spread stE ,tE .
Having these two assumptions at hand, the crucial step in the
derivation is to handle the accumulated loss variable LtE . To this
end, it is useful to define a modified running spread quantity, de-
noted loss-adjusted running index CDS spread, and given via

ŝt,tE :=
E[1{τ[d]>tE}DF (t, tE) (1−R)LtE +DDL(t, tN ) |Ht]

E[DPL(t, tN ) |Ht]
.

With this artificial spread definition, formula (4) allows to be re-
written as the sum of two simpler expectation values, namely

ICDSO(0) = E
[
DF (0, tE) (1−R)LtE 1{τ[d]≤tE}

]
(7)

+ E
[
DF (0, tE)E[DPL(tE , tN ) |HtE ] (ŝtE ,tE − s

(K))+

]
,

a justification is provided in the Appendix for the sake of clarity.
The second expectation value might now be attacked by a stan-
dard change of numeraire technique with the numeraire process
t 7→ E[DPL(t, tN ) |Ht], yielding ultimately the useful pricing for-
mula

ICDSO(0) = DF (0, tE)
(

(1−R)P(τ[d] ≤ tE)

+ E[DPL(0, tN )] Ê[(ŝtE ,tE − s
(K))+]

)
. (8)

In the latter formula Ê denotes the expectation with respect to a
measure P̂ related to the aforementioned numeraire. Moreover, it
can be shown that {ŝt,tE}t∈[0,tE ] is a martingale under P̂. Similar
as in the single-name case, see Mai (2014), formula (8) achieves
a convenient separation between a model for (τ1, . . . , τd) under
P and a second model for the evolution of ŝt,tE under P̂. The
conclusions from this observation are almost identical to the con-
clusions in the single-name case. However, let us point out one
problem for practical applications that is not present in the single-
name case: when imposing lognormal dynamics on ŝt,tE under
P̂, required is the start value ŝ0,tE , but the market participants rat-
her like to have a formula involving the observable quantity s0,tE .
The difference between the two quantities depends only on the
expected number of defaults in the basket until tE .
The further simplifying assumptionAssumption 3: the spreads st and ŝt differ only

by a computable constant

ŝt,tE −
E[DDL(t, tN ) |Ht]
E[DPL(t, tN ) |Ht]︸ ︷︷ ︸

=:ŝt,tE

=
E[1{τ[d]>tE}DF (t, tE) (1−R)LtE |Ht]

E[DPL(t, tN ) |Ht]

≈ E[(1−R)DF (t, tE)LtE ]

E[DPL(t, tN )]
=: ε(t)

can help to circumvent this issue. Define s̄t,tE like st,tE only with
expectations with respect toFt in numerator and denominator re-
placed by expactations with respect to Ht, so that s̄0,tE = s0,tE ,
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as desired. It can be shown that {s̄t,tE}t∈[0,tE ] is also a martin-
gale under P̂, and that the pricing formula (8) further simplifies
to

ICDSO(0) = DF (0, tE)
(

(1−R)P(τ[d] ≤ tE)

+ E[DPL(0, tN )] Ê
[(
s̄tE ,tE −

(
s(K) − ε(0)

))
+

])
. (9)

It is now clear how the remaining expectation with respect to P̂ in
(9) gives rise to a Black-formula which, in contrast to (8), relies on
an adjusted strike spread and the observable spread s0,tE as in-
put. It is further pointed out by Armstrong, Rutkowski (2009) that
some market participants completely neglect the first term, be-
cause P(τ[d] ≤ tE) ≈ 0. With a similar far-fetched argument, one
could also drop the strike-adjustment (i.e. set ε(0) = 0), which
then ultimately leaves one with precisely the standard market-
typical Black formula (6).

3 Summary The existing methods for pricing index CDS options have been
surveyed, with a focus on the mathematical techniques behind
them. In particular, it has been pointed out that the formulas used
in the marketplace rely on quite heavy and unrealistic assumpti-
ons. It has also been explained why the derivation of more reali-
stic pricing formulas is quite challenging.
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Appendix We briefly justify the derivation of formula (7) from formula (4)
under the two simplifying assumptions mentioned. The second
assumption readily implies

ICDSO(0) = E
[
DF (0, tE)

(
(1−R)LtE

+ 1{τ[d]>tE} E[DPL(tE , tN ) | FtE ] (stE ,tE − s
(K))

)
+

]
.
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Considering the two disjoint events {τ[d] > tE} and {τ[d] ≤ tE}
separately, the first expectation value in (7) simply corresponds
to the armageddon event {τ[d] ≤ tE}. On the event {τ[d] > tE}
we compute

E
[
1{τ[d]>tE}DF (0, tE)

(
(1−R)LtE

+ 1{τ[d]>tE} E[DPL(tE , tN ) | FtE ] (stE ,tE − s
(K))

)
+

]
= E

[
1{τ[d]>tE}DF (0, tE)

(
(1−R)E[LtE | FtE ]

+ E[DDL(tE , tN ) | FtE ]− s(K) E[DPL(tE , tN ) | FtE ]
)
+

]
= E

[ 1{τ[d]>tE}

P(τ[d] > tE |HtE )
DF (0, tE)

(
(1−R)E[LtE |HtE ]

+ E[DDL(tE , tN ) |HtE ]− s(K) E[DPL(tE , tN ) |HtE ]
)
+

]
= E

[ 1{τ[d]>tE}

P(τ[d] > tE |HtE )
DF (0, tE)×

× E[DPL(tE , tN ) |HtE ] (ŝtE − s
(K))+

]
= E

[
DF (0, tE)E[DPL(tE , tN ) |HtE ] (ŝtE ,tE − s

(K))+

]
.
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