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Abstract Credit-equity models are often used to infer equity derivative pri-
ces from observed prices of credit instruments referring to the
same company, or vice versa. There is a huge degree of model
freedom, hence model uncertainty, when doing this. The intro-
duction of reasonable model axioms that diminishes this model
uncertainty is more art than science. The present note investiga-
tes this model uncertainty and aims to provide a feeling for the
effect of commonly made assumptions.

1 Introduction Throughout, we denote by r(.) a determinsitic, risk-free short ra-
te used for discounting cash flows, and we denote by δ(.) a deter-
ministic, continuous dividend yield associated with the stock of a
company XY. The share price at time t ≥ 0 is denoted by St, and
the first time point in the future when a credit event with respect
to company XY occurs is denoted by τ . We consider mathema-
tical models that are capable of pricing both credit instruments
referring to company XY and equity derivatives with the share of
XY as underlying. In accordance with financial theory, this means
that the considered models induce a probability space on which
both S = {St}t≥0 and τ are defined, with (risk-neutral) probabili-
ty measure Q having the property that the wealth process of the
portfolio that is long one stock is expected to accrue at the risk-
free rate r(.) on average. Intuitively, under Q an investor is indef-
ferent between investing into the risky asset S or into the risk-free
bank account. Mathematically, the non-negative process

e−
∫ t
0 r(s)−δ(s) ds St, t ≥ 0, (1)

needs to be a Q-local martingale with respect to the market fil-
tration, cf. Delbaen, Schachermayer (1994, 1998). Given such a
model, the price of a European-style equity derivative with ma-
turity T > 0 and payoff function h is given by the expectation
of h(ST ) with respect to Q, multiplied with the discount factor
exp(−

∫ T
0 r(s) ds), explicitly

ED(h, T ) := e−
∫ T
0 r(s) ds EQ

[
h(ST )

]
. (2)

American-style and more exotic equity derivatives in general de-
pend on the probability distribution of the whole path {St}t∈[0,T ]
under Q. What about credit derivatives? Having made an ass-
umption about the recovery rate R in a potential auction followi-
ng a credit event, the price of a credit default swap (CDS) within
such a model is given in terms of the function t 7→ Q(τ > t), i.e.
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is determined by the risk-neutral default probabilities, explicitly

CDS(R, c, T ) := (1−R)

∫ T

0
e−

∫ t
0 r(s) ds dQ(τ ≤ t)

− c
∫ T

0
Q(τ > t) e−

∫ t
0 r(s) ds dt, (3)

where c denotes the contractually specified CDS running premi-
um. Furthermore, under the assumption that the value of a bullet
bond issued by company XY jumps down to the recovery value
R at τ , its price is given by a similar formula. Like in the case
of equity derivatives, in case of more exotic credit derivatives,
e.g. like bonds with call options, the respective pricing formulas
depend on the evolution of survival probabilities over time1.
One popular use of a credit-equity model is to infer the prices
of equity derivatives from the ones of credit derivatives, or vi-
ce versa. For example, if one observes market prices for CDS
with different maturities, it is possible to calibrate a credit-equity
model to these observations making use of formula (3). If the
CDS observations are sufficient to determine all parameters of
the model, the calibrated model can be applied to generate mo-
del prices for European equity derivatives via formula (2). The
latter might now be compared with actually observed equity deri-
vative prices in the marketplace to make a decision whether the
available equity derivatives are cheap relative to the credit deri-
vatives. If this is the case, either the market offers an opportunity
for a relative value trade, or the market is efficient and the mo-
del is unrealistic. If one believes in an efficient market, one major
criterion for checking the quality of a credit-equity model is its ca-
pability of jointly explaining all observed market prices for credit
and equity derivatives. However, the following issues point out
that “fitting capability” is not everything in practice:

(i) A second important criterion that is in direct conflict with the
capability of explaining all prices is the requirement for a small
number of model parameters in order to maintain tractabili-
ty and to reduce identifiability issues. This results in the clas-
sical trade-off between realism and tractability which every
theoretical model faces when it is applied, and which often
turns applied mathematics more into art than science.

(ii) Some market participants believe that the efficient market
hypothesis does not hold. Instead, based on empirical re-
search and expert opinion, they believe in certain relation-
ships between credit derivative and equity derivative prices
that they postulate as model axioms. Put differently, they trust
the projections of their models more than the observed mar-
ket prices.

(iii) There are fundamental relationships between credit and
equity of a company that cannot be ignored. It is of course
easy to define a credit-equity model that is consistent with
finance theory (i.e. which induces a risk-neutral probability

1The function t 7→ Q(τ > t) provides the survival probabilities at time t = 0,
but at t > 0 with more market information revealed, the whole function
might fluctuate.
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measure) and explains all observed market prices. One may
simply model the equity and credit components of the model
completely independent of each other, i.e. assume that τ and
S are independent under Q. One may then construct some
arbitrary model for τ that explains all observed credit derivati-
ves, and a model for S that explains all credit derivatives. For
both tasks there is extensive literature and numerous models
with good fitting capacities can be found. However, this inde-
pendence assumption is neither justified empirically (by ob-
serving historical prices of equity and credit derivatives) nor
fundamentally, since the valuations of equity and debt of a
company are clearly interrelated.

As a consequence of (iii) above, it is necessary to make modeling
assumptions on the relationship between credit and equity in the
model. In the present article, we investigate some specific credit-
equity models, satisfying one or more of the following axioms that
narrow down the modeling cosmos in increasing order:

(A1) Jump-to-default assumption:
At time τ it is assumed that the share price jumps to zero and
remains there, i.e.

Q(τ ≤ t) = Q(St = 0), for all t > 0.

This assumption reflects the idea that the company goes bank-
rupt at time τ , the company XY is handed over from the equity
holders to the creditors, and after all debt is serviced no equi-
ty is remaining.

(A2) Credit spread and share price are reciprocal:
We assume (A1) and, additionally: if the share price falls (ri-
ses), CDS prices increase (decrease). This assumption re-
flects the idea that the default scenario associated with ass-
umption (A1) does not only hold at τ , but is actually anticipa-
ted in market prices also before τ . This is an assumption that
can often be observed empirically, see, e.g. Figure 1.

(A3) Market anticipates credit event:
We assume (A2) and, additionally: between today and the oc-
curence of a credit event at τ there must be at least one time
period with significantly increasing CDS prices (resp. decre-
asing share price), so that τ cannot happen completely out
of the blue. This assumption incorporates the empirical ob-
servation that a credit event typically follows a time period
with extremely wide credit spreads, before it ultimately takes
place, i.e. the event is typically anticipated by market partici-
pants.

2 The models considered In view of the classical trade-off between realism and tractability
mentioned in (i) above, it is obvious that the realism increases
with the axioms from (A1) to (A3), but to find tractable models
also becomes increasingly more difficult. We consider three spe-
cific models in the sequel, all of them satisfying the no arbitrage
condition that the wealth process (1) is a Q-local martingale, but
they differ with regards to axioms (A1) to (A3).
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Fig. 1: Share price and 5Y CDS par spread of NRG Energy Inc.,
a US company, from 6 February 2015 to 6 February 2017.
A strong anti-correlation is obvious, e.g. Spearman’s Rho
between both time series is−71%, justifying a model ass-
uming that one time series is a strictly decreasing function
of the other.

2.1 Simplest credit-equity model The model satisfies (A1) but not (A2). The bankruptcy time τ
is some random variable with survival function given by Q(τ >
t) = exp

(
−
∫ t
0 λ(s) ds

)
for a non-negative and integrable functi-

on λ(.), called default intensity2. The share price is defined as

St := S0 e
∫ t
0 λ(s)+r(s)−δ(s) ds e−

1
2
σ2 t+σWt 1{τ>t}, t ≥ 0,

for a volatility parameter σ > 0, and W = {Wt}t≥0 denotes
a standard Q-Brownian motion that is independent of τ . Within
this model, the expectation value in (2) boils down to an integral
with respect to a lognormal density, and the survival probabilities
in (3) are by definition given in terms of the default intensity λ(.),
and fully independent of σ.

2.2 JDCEV model The model satisfies (A2) but not (A3). The specification we con-
sider is a three-parametric special case of the model introduced
in Carr, Linetsky (2006). With parameters λ0, σ0 > 0, and β < 0
it is based on a diffusion process Z = {Zt}t≥0 given by the SDE

dZt
Zt

=
(
r(t)− δ(t) + λ(Zt)

)
dt+ σ(Zt) dWt, Z0 = S0,

λ(z) := λ0

( z
S0

)2β
, σ(z) := σ0

( z
S0

)β
,

where W = {Wt}t≥0 is a standard Q-Brownian motion. With
ε denoting an exponential random variable with unit mean, in-
dependent of W , the bankruptcy time and the share price are

2If λ(.) ≡ λ is identically constant, τ has an exponential distribution.
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defined as

τ := inf
{
t > 0 :

∫ t

0
λ(Zs) ds > ε

}
, (4)

St := Zt 1{τ>t}, t ≥ 0.

For β ↘ 0, the model converges to the simplest credit-equity
model with constant default intensity λ(.) ≡ λ0. From this point of
view it may be seen as a proper generalization of the latter. The
JDCEV model has the striking property that there exist closed
formulas for the values of European equity derivatives given in (2)
and for survival probabilities as required in (3), see Carr, Linetsky
(2006). However, all three model parameters λ0, σ0, β enter both
formulas, which is a difference to the simplest credit-equity model
(where the parameter σ only affected equity derivatives but not
credit derivatives).

2.3 JDCEV+ model The model satisfies (A3) and includes the JDCEV model as a
special case. The intuition behind the model is to enhance the
JDCEV model in such a way that sudden, unexpected defaults
cannot happen. In order to describe its idea intuitively, we put
ourselves in the setup of the JDCEV model and consider one
particular scenario ω in which default happens before maturity
T , i.e. τ(ω) ≤ T . The share price path t 7→ St(ω) drops to zero
at τ(ω), but this default can happen in two qualitatively different
ways: Either the observable share price decreases dramatically
already on [0, τ), which leads to a huge value

∫ τ(ω)
0 λ(Ss(ω)) ds >

ε(ω) triggering default according to the definition of τ in (4). Or
this is not the case and the default happens because the un-
observable variable ε(ω) turns out unexpectedly small. While the
first scenario is in accordance with axiom (A3), the second is not.
Thus, we seek to enhance the JDCEV model in such a way as to
eliminate scenarios of the second kind.
First, we enhance the JDCEV model by a parameter η ∈ (0, 1)
as follows. On a probability space (Ω,F ,Q) we consider two unit
exponential random variables ε, ε̃, and two standard Brownian
motions W, W̃ , all four objects stochastically independent. The
diffusion process Z is replaced by a process Z̃ according to the
SDE

dZ̃t

Z̃t
=
(
r(t)− δ(t) + η λ̃(Z̃t)

)
dt+ σ̃(Z̃t) dW̃t, Z̃0 = S0,

λ̃(z) := λ̃0

( z
S0

)2 β̃
, σ̃(z) := σ̃0

( z
S0

)β̃
.

Let τ̃ be defined exactly as τ is defined in the JDCEV model,
only replacing Z by Z̃, that is

τ̃ := inf
{
t > 0 :

∫ t

0
λ̃(Z̃s) ds > ε̃

}
,

and consider the process

S̃t :=

{
Z̃t , if t < τ̃

(1− η) Z̃τ̃ , if t ≥ τ̃
, t ≥ 0.
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The sole difference between the JDCEV model (τ, S) and the
model (τ̃ , S̃) is that the share price S̃ does not jump down to
zero at τ̃ , like S does at τ , but instead it looses the percentage
η of its value at τ̃ and then remains frozen at that value until
eternity. For η ↗ 1 the model converges to the JDCEV model.
It can be shown that the wealth process (1) with respect to the
share price S̃ is a local Q-martingale with respect to the filtration

F̃t := σ
(
Z̃s, 1{τ̃>s} : s ≤ t

)
, t ≥ 0,

so this alternative model, in which the stock does not jump all
the way down to zero, is an arbitrage free pricing model as well.
However, we do not interpret the time point τ̃ as bankruptcy time,
but as a time point at which distress information regarding to the
company is made public in the marketplace, and hence causes
a massive loss. The company is assumed to live on after τ̃ in
another distressed regime, which is again modeled by a second
JDCEV model with much extremer parameters. To be precise,
we consider a JDCEV diffusion with parameters and start value
being randomly given as functions of S̃τ̃ , given by the SDE

dZt
Zt

=
(
r(t)− δ(t) + λ(Zt)

)
dt+ σ(Zt) dWt, Z0 = S̃τ̃ ,

λ(z) := λ0(S̃τ̃ )
( z
S̃τ̃

)2β(S̃τ̃ )
, σ(z) := σ0(S̃τ̃ )

( z
S̃τ̃

)β(S̃τ̃ )
,

where the parameters
(
λ0(.), σ0(.), β(.)

)
are functions of the sha-

re price S̃τ̃ at τ̃ . Finally, the bankruptcy time and share price are
defined as

τ := inf
{
t > τ̃ :

∫ t

τ̃
λ(Zs−τ̃ ) ds > ε

}
,

St :=

{
S̃t , if t ≤ τ̃
Zt−τ̃ 1{τ>t} , else

, t ≥ 0.

The parameters
(
λ0(.), σ0(.), β(.)

)
are chosen “extreme” in the

sense that a soon default after τ̃ is highly likely. For our case
study below, we choose

λ0(S̃τ̃ ) = λ̃0

(
1 + 6

(
1− 2

− S̃τ̃
S0

))
,

σ0(S̃τ̃ ) = σ̃0, β(S̃τ̃ ) = β̃.

While the parameters β̃ and σ̃0 remain unchanged after τ̃ , the
idea of the definition of λ0(S̃τ̃ ) is to increase it more if S̃τ̃ is hig-
her. If S̃τ̃ is already close to zero, this parameter remains almost
unchanged. Thus, this definition does not change paths of the
first JDCEV model that are already doomed for default, but paths
of the first JDCEV model in which τ̃ comes by complete surpri-
se are turned into paths of a new JDCEV model with very high
instantaneous default probability to likely trigger a default shortly
after τ̃ . Figure 2 visualizes two paths of this model.
We define the market filtration (Ft)t≥0 as

Ft :=

{
F̃t , if t ≤ τ̃
F̃τ ∨ σ

(
Zs−τ̃ , 1{τ>s} : τ < s ≤ t

)
, else

, t ≥ 0,
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Fig. 2: Two paths of the JDCEV+ model with parameters S0 =
100, λ̃0 = 0.05, β̃ = −0.4, σ̃0 = 0.7, η = 0.75. The upper
plot shows a path in which τ̃ comes by complete surpri-
se and the share price is doomed for default after τ̃ . The
lower plot shows a path in which τ̃ is already anticipated
by the market, and hence almost coincides with τ .

and note that the wealth process (1) is a Q-local martingale
with respect to (Ft). This follows from the fact that two JDCEV-
martingales are pasted together at τ̃ smoothly, i.e. the start value
of the second martingale coincides with the end value of the first
martingale. The time point τ̃ is best thought of as a change point
at which the parameters and the absolute value of the JDCEV
share price change dramatically. After τ̃ the model is a regular
JDCEV model, which is started at τ̃ with parameters and start
value depending on the first JDCEV model’s final value S̃τ̃ .

3 A case study Concerning the ability to capture realistic features, the JDCEV+
model is the most appropriate one among the three introduced
models, since it satisfies all axioms (A1), (A2), and (A3). Unfortu-

777



nately, closed pricing formulas for credit- and equity-derivatives
are challenging to evaluate numerically due to the mathemati-
cal complexity of the model. However, it is possible to evaluate
derivative prices by means of a Monte Carlo simulation. Quickly
explained, this means that a huge number N of independent si-
mulations of the model ({St}t∈[0,T ], τ) are generated in the com-
puter. Each single simulation contributes a possible realization
for the derivative prices in concern. Ultimately, estimates of the
derivative prices under concern are given by the arithmetic ave-
rage over all simulated prices. By the law of large numbers, these
estimates converge to the true derivative prices as N tends to in-
finity, which justifies to use them as price evaluations for large N .
In the following case study we set N = 100, 000.
In the sequel, we consider four observed market CDS curves
with differing qualitative nature, which capture different possible
regimes a company can be in:

(a) IG curve: an upward sloping CDS curve with 1Y CDS par
spread quite tight at around 20 bps, and 10Y CDS par spread
at around 180 bps, which looks quite typical for an average
investment grade company.

(b) Moderate spread levels: an upward sloping CDS curve with
1Y CDS par spread at around 160 bps, and 10Y CDS par
spread at around 475 bps.

(c) HY curve: an upward sloping CDS curve with 1Y CDS par
spread already quite wide at around 500 bps, and 10Y CDS
par spread at around 830 bps, which looks quite typical for an
average high yield company.

(d) Distressed curve: a CDS curve with 1Y CDS par spread al-
ready at around 890 bps, 3Y CDS par spread at 1100 bps, and
then decreasing with a 10Y CDS par spread still at around
950 bps, which looks quite typical for a highly distressed com-
pany.

For each of the cases (a) to (d) we find model parameters of
the JDCEV+ model explaining the desired CDS curve shapes,
the prices being computed by Monte Carlo simulation. The pa-
rameters of the JDCEV model and of the simple credit-equity
model are then calibrated to the same CDS curve. For the sim-
ple credit-equity model this calibration works perfectly by defining
the default intensity function λ(.) in a piecewise constant manner
and bootstrapping the single pieces iteratively to the JDCEV+
CDS prices, as described, e.g., in O’Kane, Turnbull (2003). For
the considered three-parametric JDCEV model, the calibration
does not provide a perfect, but a satisfactorily good match to the
JDCEV+ CDS prices.
Figures 3, 4, 5, and 6 visualize the results in cases (a), (b), (c),
and (d), respectively. The top plots in all figures show the CDS
curves implied by the JDCEV and the JDCEV+ model. These are
almost identical in all figures, as desired, demonstrating the good
fitting capacity of the JDCEV model to the CDS curve compu-
ted via Monte Carlo simulation in the JDCEV+ model. The CDS
curve implied by the simple credit-equity model is not depicted,
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Fig. 3: Top: CDS curves implied by the JDCEV and the JDCEV+
model in case (a). Bottom: Implied volatility smiles implied
from European put options with two years maturity in all
considered models.

since it is clearly possible to match any CDS curve accurately
by bootstrapping a piecewise constant default intensity. The bot-
tom plots in all figures visualize the implied volatility smiles for
European put options with two year maturity. These are depicted
for JDCEV and JDCEV+ model, as well as for different simple
credit-equity models, namely with three different choices for the
parameter σ ∈ {0, 0.65, 1}. Recall that σ in the simple credit-
equity model has no effect on the CDS curve, so can be chosen
arbitrarily without changing the model-implied CDS curve, which
is a major difference compared with the other two considered
models.
It is observed that in those cases with upward sloping CDS cur-
ve, namely cases (a), (b), and (c), the implied volatility smile in
the JDCEV model lies below the implied volatility smile in the
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Fig. 4: Top: CDS curves implied by the JDCEV and the JDCEV+
model in case (b). Bottom: Implied volatility smiles implied
from European put options with two years maturity in all
considered models.

JDCEV+ model. Only in case (d) with inverse CDS curve the JD-
CEV model exhibits higher implied volatilities than the JDCEV+
model. In the IG curve case (a) the difference between the JD-
CEV+ and the JDCEV model in volatility points for the considered
options is around 10, in case (b) around 15, in case (c) around
10 again, and in case (d) it becomes negative. Recalling the two
qualitatively different types of paths in the JDCEV+ model from
Figure 2, an explanation could be as follows. The JDCEV+ mo-
del features almost no paths in which default comes completely
unanticipated (which is its major motivation). Consequently, in
order to obtain the same CDS curve (i.e. default probabilities)
in JDCEV and JDCEV+ model, the latter requires a higher le-
vel of spread- (hence stock-) volatility in order to compensate for
that part of the CDS price accounting for “surprising defaults” in
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the JDCEV model. This higher stock volatility apparently carries
over to higher option prices, i.e. the option prices seem to be
more sensitive to “volatility” than to “pure sudden default risk” in
normal situations (cases (a), (b) and (c)). When the situation is
already very distressed (such as in case (d)), this phenomenon
becomes reversed, i.e. option prices seem to be more sensitive
to “pure sudden default risk” (present only in JDCEV model) than
to “volatility” (stronger present in JDCEV+ model).
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Fig. 5: Top: CDS curves implied by the JDCEV and the JDCEV+
model in case (c). Bottom: Implied volatility smiles implied
from European put options with two years maturity in all
considered models.

Having a look at the implied volatility smiles induced by the diffe-
rent simple credit-equity models, one realizes that the free para-
meter σ essentially controls the absolute level of the implied vola-
tility smile. With increasing σ the implied volatilities increase. As
σ tends to zero, the implied volatility smile tends to a lower bound
(the purple line), which is higher the wider the CDS curve is. This
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is intuitive, since wider CDS par spreads imply higher default pro-
babilities, inducing higher probabilities for the event {ST = 0} in
accordance with axiom (A1). By the martingale property of the
wealth process, higher probabilities for the event {ST = 0} must
come along with higher probabilities for ST being large as well,
hence with a higher variance of ST , explaining higher option pri-
ces.
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Fig. 6: Top: CDS curves implied by the JDCEV and the JDCEV+
model in case (d). Bottom: Implied volatility smiles implied
from European put options with two years maturity in all
considered models.

What is the conclusion of this case study? While both the JDCEV
and the JDCEV+ model can be viewed as functions mapping an
observed CDS curve uniquely to an implied volatility smile, the
simple credit-equity model can not. The assumptions made in the
simple credit-equity model to link credit- and equity-components
are simply too weak to use it as a tool to infer information about
one component from the other. At least the lower bound on the

121212



implied volatility smile in the case σ = 0 can be a useful in-
formation to be read off from the simple credit-equity model. A
decision between JDCEV and JDCEV+ model is clearly more art
than science. Whereas the JDCEV+ model might be one’s pre-
ferred choice as it satisfies the most realistic axiom (A3), usability
clearly favors the JDCEV model.

4 Conclusion It was demonstrated that it is necessary to incorporate at least
a reciprocal relationship between credit spread and equity into
a credit-equity model in order to make it useful for predictions
of credit derivatives prices from equity derivatives prices, or vice
versa. Furthermore, when enhancing the so-called JDCEV mo-
del so as to eliminate paths with a sudden, unanticipated default,
CDS-implied predicted implied volatilities in the model were ob-
served to to be larger than in the usual JDCEV model in the usual
case of an upward sloping CDS curve. In case of an inverse CDS
curve, the opposite has been observed.
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