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Abstract The seminal work of Harry Markowitz from the 1950s is the first
scientific approach towards portfolio selection based on the idea
of diversification, constituting a quantitative setup whose core
ideas are still prominent in today’s financial industry. The content
of the present article consists of three parts. First, the Markowitz
theory is summarized, with an emphasis on its relation with the
concept of the Sharpe ratio, and also recalling its relation with the
Black–Scholes model via power utility maximization. Second, its
limitations and potential generalizations are discussed. Third, it is
demonstrated in the particular case of our fund XAIA Credit Cur-
ve Carry how the related concept of Sharpe ratio maximization
can assist with managing daily portfolio adjustments.

1 Introduction Regarding notations, for an arbitrary natural number n the ele-
ments of Rn are always interpreted as column vectors, and for
x ∈ Rn we write xT for the associated row vector, i.e. the trans-
pose of x. This explicit distinction between row and column vec-
tors sometimes leads to seemingly excessive uses of the trans-
pose-symbol, but is important because of the matrix algebra in-
volved in Markowitz theory. We consider an investment universe
of d ∈ N risky assets, and write x = (x1, . . . , xd)

T ∈ Rd for
the vector of invested capitals corresponding to these assets in
our portfolio. Furthermore, by 1 and 0 we denote the elements
in Rd with all entries equal to one and zero, respectively. It is
furthermore assumed that there exists no portfolio in Rd \ {0}
that is risk-free, which can intuitively be seen as a no arbitrage
hypothesis. The existence of a unique risk-free asset is inclu-
ded in the analysis separately by enlarging the space of possible
(risky) portfolios Rd by an additional dimension to R × Rd. We
represent the first component of an element (x0,x) in this set
as the cash amount invested into the risk-free asset. For a non-
trivial1 portfolio (x0,x) the value 1 − x0/

∑d
k=0 |xk| is called the

investment ratio. Notice that the investment ratio is by definition
non-negative, and equals zero if and only if x = 0. If the invest-
ment ratio equals one (i.e. x0 = 0), we say the portfolio is fully
invested. If it is larger than one (i.e. x0 < 0), we say the portfolio
is leveraged.
In this article by quantitative portfolio selection we mean a two-
step portfolio selection approach of the following kind.

(1) For each potential portfolio (x0,x) ∈ R× Rd a finite number
of key figures forms the basis for portfolio selection. Examp-
les of such key figures are expected return measurements,

1By “non-trivial” we mean any portfolio (x0,x) except for the case x0 = x1 =
. . . = xd = 0.
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default likelihoods, risk measures like Value-at-Risk or stan-
dard deviation, skewness and kurtosis, the investment ratio,
etc..

(2) Portfolio selection tasks are exclusively based on an algo-
rithm that uses only the key figures from Step 1 as input.
A typical example is that one defines a preference function
p(.) from the set of the key figures to R and prefers portfolio
(x0,x) to (y0,y) if

p
(
key figures of (x0,x)

)
≥ p
(
key figures of (y0,y)

)
.

Maximization of p(.) is then a natural, generic mathematical
wrapping to organize portfolio selection.

The seminal work of Harry Markowitz, cf. Markowitz (1952, 1959),
is one particular portfolio selection approach that falls within this
category, and is recapped in Section 2, where an important connec-
tion between Markowitz-optimality and the concept of a Shar-
pe ratio is particularly highlighted2. Section 3 discusses shortco-
mings and potential generalizations of the Markowitz paradigm,
and Section 4 presents a concrete application of the Markowitz
technique to daily portfolio rebalancing tasks in the particular ca-
se of our fund XAIA Credit Curve Carry. Section 5 finally conclu-
des.

2 Markowitz theory The core idea in the seminal work of Harry Markowitz, cf. Mar-
kowitz (1952, 1959), is to describe each potential asset in the
investment universe by just two key figures, one representing an
expected return measurement, henceforth denoted by a function
µ : R × Rd → R, and the other representing a risk measure-
ment, henceforth denoted by a function σ : R × Rd → [0,∞).
The expected return measurement of a specific portfolio (x0,x)
is denoted by µ(x0,x), and the risk measurement by σ(x0,x). It
is assumed that σ(x0,x) > 0 whenever x 6= 0 and σ(x0,0) = 0
for arbitrary x0 ∈ R. This means that any portfolio with positive
investment ratio is risky, and one with zero investment ratio is
risk-free. This two-dimensional viewpoint naturally defines a par-
tial order on the set of all portfolios, i.e. on R × Rd, namely in
that a rational investor is assumed to prefer (x0,x) to (y0,y) if
the expected return of (x0,x) is greater or equal to the one of
(y0,y) while the risk of (x0,x) is smaller or equal than the one
of (y0,y), i.e.

(x0,x) ≥ (y0,y)

⇔ µ(x0,x) ≥ µ(y0,y) and σ(x0,x) ≤ σ(y0,y)

⇔ the point
(
σ(x0,x), µ(x0,x)

)
lies northwest of

the point
(
σ(y0,y), µ(y0,y)

)
in the (σ, µ)-plane.

Basing portfolio selection on this paradigm corresponds to a search
for portfolios (x0,x) that are maximal with respect to this partial

2The interested reader is referred to the standard textbook Elton, Gruber
(1995) for more elaborate background on Markowitz theory and its appli-
cations.
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order on a subset D ⊂ R× Rd. Typical subsets of interest are

D(N) :=
{

(0,x) : 1T x = N
}
,

D+(N) := {(0,x) ∈ D(N) : x1, . . . , xd ≥ 0},

which intuitively represent fully invested portfolios whose total
invested capital3 is N , with or without the possibility for asset
short-selling. Thanks to the two-dimensional risk-return perspec-
tive this optimization problem can be solved graphically by finding
the portfolios that are “most northwest” in the (σ, µ)-plane. Under
the assumption that µ(.) and σ(.) are continuous, the projection
of a certain setD ⊂ R×Rd of considered portfolios is connected
whenever D itself is connected in R× Rd.
The traditional Markowitz setup defines the key figures µ, σ as

µ(x0,x) := r x0 + µT x, σ(x0,x) :=
√
xT Σx, (1)

with a risk-free rate r ∈ R, a vector µ ∈ Rd of expected re-
turns for the risky assets, and a symmetric and positive defi-
nite matrix Σ ∈ Rd×d. This definition is backed by any model
for the unknown future log-returns of the d risky assets over the
next year as random variables R1, . . . , Rd. Denoting by µ the
mean vector and by Σ the covariance matrix of the random vector
R := (R1, . . . , Rd)

T , the definition (1) relies on the assumption
that the unknown future log-return of the fully invested portfolio
(0,x) equals the linear combination xT R of the single risky as-
sets’ log-returns. Definition (1) corresponds to considering mean
and standard deviation of the portfolio log-return xT R as expec-
ted return and risk measurements. The parameters µ and Σ are
typically retrieved from historical data and/or expert opinions, see
also paragraph 3.4 below.
Subsection 2.1 summarizes the major findings within the Mar-
kowitz setting, in particular with regards to portfolio optimality.
Subsection 2.2 further highlights the close connection of Marko-
witz optimality with the concept of a Sharpe ratio. Subsection 2.3
briefly recalls the seminal work of R.C. Merton, who shows that
Markowitz-optimal portfolios maximize the power utility function
in a dynamic multivariate Black–Scholes model.
To abbreviate notation we henceforth denote by

[x,y] := xT Σ−1 y, x,y ∈ Rd,

the scalar product induced by the symmetric and positive definite
matrix Σ−1, because it appears several times in what follows.

2.1 The major statements The first main target in Markowitz theory is to find optimal portfoli-
os within the set D(1) of fully invested portfolios, and to describe
their location in the (σ, µ)-plane. These findings are gathered in
the following theorem, and are visualized in Figure 1.

Theorem 2.1 (Optimal portfolios in D(1))
We assume µ /∈ {0, 1}, since these two cases of less interest
are treated separately in Remark 2.2 below.

3The total invested capital is often normalized to one, i.e. N = 1.
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(a) For each given expected return c ∈ R the function x 7→√
xT Σx takes a unique minimum s(c) on the set

D(1, c) := {x ∈ Rd : (0,x) ∈ D(1), µT x = c}

of fully invested portfolios with expected return equal to c.

(b) The minimum in part (a) is given by

s(c) =

√
c2 [1,1]− 2 c [1,µ] + [µ,µ]

[µ,µ] [1,1]− [1,µ]2
,

and is attained at the portfolio

x(c) =
c [1,1]− [1,µ]

[µ,µ] [1,1]− [1,µ]2
Σ−1µ

+
[µ,µ]− c [1,µ]

[µ,µ] [1,1]− [1,µ]2
Σ−1 1.

(c) The minimal value of s(c) is attained for c = [1,µ]/[1,1], is
given by s(c) = 1/

√
[1,1], and the respective portfolio

xm := x
(
[1,µ]/[1,1]

)
=

Σ−1 1

[1,1]

is called the minimum variance portfolio.

(d) For each attainable standard deviation s ≥ 1/
√

[1,1] there
is an interval [c−(s), c+(s)] of expected returns that can be
attained by portfolios in the set

{x ∈ Rd : (0,x) ∈ D(1),
√
xT Σx = s}

of fully invested portfolios with standard deviation s. The end-
points of these intervals describe a hyperbola given by

c±(s) =
[1,µ]

[1,1]
±
√

[µ,µ] [1,1]− [1,µ]2

[1,1]

√
s2 [1,1]− 1.

Proof
See Appendix A. �

The upper branch c+(s) of the hyperbola in part (d) is called effi-
cient frontier, because it represents the “most northwest” portfoli-
os in the (σ, µ)-plane, i.e. the ones that are maximal with respect
to the aforementioned partial order.

Remark 2.2 (Non-interesting cases)
In the case µ = 0 the minimum variance portfolio xm is clearly
the unique optimal portfolio with respect to the Markowitz partial
order, and the (σ, µ)-projection of the set D(1) boils down to a
part of the σ-axis. In the case µ = 1, every fully invested port-
folio (0,x) ∈ D(1) satisfies µT x = 1, so that D(1, c) = ∅ for
c 6= 1. This means that the (σ, µ)-projection boils down to a li-
ne parallel to the σ-axis and the minimum variance portfolio is
the unique optimal portfolio with respect to the Markowitz partial
order. In all other cases, which are considered in Theorem 2.1,
the Cauchy-Schwarz inequality implies [µ,µ] [1,1]− [1,µ]2 > 0.
This guarantees that we never divide by zero in all presented for-
mulas.
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Fig. 1: Visualization of the (σ, µ)-plane, and the projections of the
respective portfolios. The dark gray area represents the
set D(1) of fully invested portfolios, while the light gray
area represents the set R × Rd of all possible portfoli-
os. The upper boundary of the light gray area (the dot-
ted line) represents the set of optimal portfolios, and its
point of tangency with the dark gray area represents the
market portfolio, i.e. the unique optimal fully invested port-
folio. The dotted line within the dark gray area sketches
the boundary of the set D(1)+ of fully invested portfolios
when short-selling is prohibited. The white crosses repre-
sent single risky assets.

While Theorem 2.1 only treats fully invested - and thus truly risky
- portfolios, it is clearly also of interest to include portfolios with
investment ratios different from one into the analysis. The port-
folio (1,0) keeps all money in the risk-free cash account and is
represented by the point (0, r) in the (σ, µ)-plane. It is not diffi-
cult to enhance the analysis from Theorem 2.1 from D(1) to the
larger set{(

1− λ, λx
)
∈ R× Rd : λ ∈ [0,∞), x ∈ D(1)

}
of portfolios whose total wealth is normalized to one, just like in
D(1), but which might have an investment ratio different from one
(i.e. essentially all portfolios modulo normalization). By definition
(1) of µ(.) and σ(.), the projection of an element (1 − λ, λx) of
this set into the (σ, µ)-plane lies on the straight line from (0, r)
to the point

(
σ(0,x), µ(0,x)

)
, and it wanders along this line with

the parameter λ. It is thus clear that there is exactly one such
straight line, associated with some (0,xM ) ∈ D(1), that has ex-
actly one point of tangency with the efficient frontier. While every
portfolio represented by some point on the straight line is optimal,
the so-called market portfolio (0,xM ) is the unique fully invested
portfolio that is optimal.
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Theorem 2.3 (The market portfolio)
Unless [1,µ] = r [1,1], the market portfolio is attained for

c =
[µ,µ]− r [1,µ]

[1,µ]− r [1,1]
(2)

in Theorem 2.1, and is given by the formula

xM = x(c) =
Σ−1 (µ− r 1)

[1,µ]− r [1,1]
. (3)

Proof
See Appendix B. �

Remark 2.4 (Special case)
Notice that the denominator [1,µ] − r [1,1] in Formulas (2) and
(3) can be zero, and this case is thus ruled out in Theorem 2.3.
In general, the efficient frontier c+(s) is asymptotically parallel
to a straight line through (0, [1,µ]/[1,1]). If [1,µ] = r [1,1],
this point becomes (0, r) and the point of tangency defining the
market portfolio would be (∞,∞). The set D(1) is unbounded
and there is a sequence (0,xn) ∈ D(1) with ||xn|| → ∞ as
n → ∞ such that the associated sequence of (σ, µ)-projections
of (0,xn), which is also an unbounded sequence in the plane,
may be viewed as an approximation of the optimal portfolio, see
also Algorithm 1 below.

Finally, let us gather a few remarks regarding the portfoliosD+(1)
with short-selling restriction. The inclusion D+(1) ⊂ D(1) can
also be observed in the (σ, µ)-plane. The set D+(1) is not ne-
cessarily projected onto the interior of a hyperbola like D(1), as
can be seen from Figure 1, where its boundary is visualized. This
boundary is always a curve between the two single risky assets
with minimal and maximal expected return. In particular, there
can be, but need not be, an intersection with the efficient frontier.
In classical economic theory, the case of no intersection can be
interpreted as the CAPM not working4. The article Brennan, Lo
(2010) discusses this issue of so-called impossible frontiers.

2.2 Connection with the Sharpe ratio Interestingly, the market portfolio xM has a close connection with
the function

p(x0,x) :=
(µ− r 1)T x√

xT Σx
, (x0,x) ∈ R× Rd \ {0}. (4)

Notice that we write this as function of (x0,x) despite the fact that
it is independent of x0 in order to indicate that it is a preference
function in the sense mentioned in the introduction. The function
p(x0, .) in (4), which is defined only for portfolios with positive
investment ratio, is called Sharpe ratio.
The Sharpe ratio is scale-invariant in the sense that

p(x0,x) = p
(
η x0, λx

)
(5)

4The capital asset pricing model (CAPM) is an equilibrium model. Under a
set of idealized assumptions, including that all market participants invest
according to the Markowitz paradigm, it implies that the weights in the mar-
ket portfolio equal the shares of the respective assets’ value in the total
value of all assets, i.e. are non-negative in particular.
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for each λ > 0, η ∈ R. Unless µ = r 1 (and hence p(x0, .)
is identically zero and non-interesting), the scale-invariance of
the Sharpe ratio implies that there is no way to continuously ex-
tend p(x0, .) to portfolios with zero investment ratio, because this
would imply for arbitrary x ∈ Rd that

p(x0,0) = lim
ε↘0

p(x0, εx) = p(x0,x),

which leads to a contradiction for arbitrary x0 ∈ R. For a similar
reason, the assumption of positive-definiteness of Σ is crucial;
the interested reader is referred to Appendix C. The scale inva-
riance of the Sharpe ratio (5) has two important consequences.
First, the portfolio (x0,x) has the same preference as the port-
folio λ (x0,x) for arbitrary λ > 0, i.e. portfolio size is not of im-
portance for portfolio preference. This is a property which is not
always realistic in applications, thinking for instance of blocking
minority stakes in bond prospectuses. Second, and even mo-
re importantly in the current context, all portfolios whose (σ, µ)-
projections lie on a straight line through (0, r) have the same
Sharpe ratio. This can be seen by setting η = 1 − λ in (5). This
already implies the following remarkable statement, manifesting
a strong relationship between Markowitz optimality and the Shar-
pe ratio.

Theorem 2.5 (Sharpe ratio maximality = Markowitz optimality)
The market portfolio (0,xM ) of Theorem 2.3 is the unique maxi-
mizer of p(x0, .) on the set D(1) of fully invested portfolios.

Proof
Clear by definition of the market portfolio and the remark prece-
ding this theorem. �

Having a closer look at the maximization of the Sharpe ratio, it is
further useful to observe that the gradient of p(x0,x) with respect
to x is given by

∇x p(x0,x) = p(x0,x)
( (µ− r 1)

(µ− r 1)Tx
− Σx

xT Σx

)
. (6)

By the scale invariance property it suffices to consider p(.) on
the set Sd := {(0,x) : x ∈ Rd, ||x|| = 1}, and it is not difficult
to see with the help of Equation (6) that p(.) takes its maximum
on Sd at (0,x∗), where

x∗ :=
Σ−1 (µ− r 1)

||Σ−1 (µ− r 1)||

is precisely the normalized version of xM according to Theorem
2.3. In other words, the optimal fully invested portfolio - i.e. the
market portfolio - can be found analytically by the following algo-
rithm.

Algorithm 1 (Market portfolio via Sharpe ratio maximization)
(i) Maximize the preference function p(.) on Sd to obtain x∗.

(ii) Unless [1,µ] = r [1,1], we have that xM = x∗/(1
T x∗).
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(iii) If [1,µ] = r [1,1], the Sharpe ratio p(.) has no maximum on
D(1), but we can find a sequence (0,xn) ∈ D(1) such that
p(0,xn) converges to p(0,x∗) by defining xn := yn/(1

T yn)
for an arbitrary sequence yn ∈ Sd \ {x∗} converging to x∗.

With this background in mind, Equation (6) is of great help in
daily portfolio management. To explain how, let (x0,x) denote
an existing portfolio. The gradient ∇x p(x0,x) tells us precisely
which portfolio holdings should be decreased or increased in or-
der to improve the Sharpe ratio of (x0,x). More precisely, under
the assumption that p(x0,x) > 0, i.e. the current portfolio has
positive expected excess return, for k = 1, . . . , d we have

∂

∂xk
p(x0,x) > 0 ⇔ (µk − r 1)

(µ− r 1)Tx
>

eTk Σx

xT Σx
, (7)

where ek denotes the k-th unit vector in Rd. Notice in particu-
lar that eTk Σx may be considered the covariance of the current
portfolio (without risk-free cash account) and a portfolio that is
fully invested exclusively in asset k. In words, (7) means that the
holding of asset k needs to be increased if and only if the ratio
of expected excess return of asset k and the current portfolio is
larger than the ratio of the covariance of asset k with the current
portfolio and the current portfolio variance. Thus, if the excess re-
turn contribution of an asset exceeds its variance contribution, its
holdings should be increased, and vice versa. The vector within
the brackets in (6) may be used to rank the assets in the portfolio
in ascending order, with the ones at the bottom of the resulting
list being the most urgent ones to be reduced, and the ones on
top of the list the most urgent ones to be increased. Obvious-
ly, such a ranking is quite useful in daily portfolio monitoring, cf.
Section 4.3 for further remarks.

2.3 Connection to power utility
maximization

Apparently, the market portfolio xM of Theorem 2.3 satisfies the
equation

(1− p) ΣxM = µ− r 1,

where the constant p is defined to be p := 1 −
∑d

k=1(µk − r),
which is smaller than one under the reasonable assumption that
µk > r for each k. This fact implies that the market portfolio
xM is optimal in the sense of power utility maximization within a
multivariate Black-Scholes model. This link between Markowitz
optimality and the Black–Scholes model has been established in
the seminal papers Merton (1969, 1971). Concretely, the price
process S(t) = (S1(t), . . . , Sd(t)), t ∈ [0, T ], is modeled as a
multivariate geometric Brownian motion with means µ and cova-
riance matrix Σ. A trading strategy π(t) is a stochastic process
with the meaning that πi(t) gives the proportion of wealth spent
on asset i at time t. It is reasonable to restrict one’s focus on
self-financing trading strategies, which means that π(t) receives
an initial amount of wealth at time t = 0 but requires no further
wealth inflows at later time points. The function Up(x) = p−1 xp

is increasing and concave for p < 1, called power utility function
(notice that for the seemingly ill-defined case p = 0 it is consis-
tently defined to equal U0(x) = log(x)). A reasonable paradigm
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for portfolio optimization within this dynamic Black–Scholes fra-
mework is to maximize the functional

E
[
Up

(
portfolio value at T when using trading strategy π(t)

)]
with respect to π(t). Up to a scalar depending on the chosen
risk aversion parameter p - that only controls how much money
is kept in the risk-free bank account - the optimizer is given by
π(t) = xM for arbitrary t ≥ 0. In words, the portfolio allocation
should be held constant and equal to the market portfolio from
Markowitz theory. The fact that the optimal trading strategy keeps
the portfolio allocation identically constant over time relies hea-
vily on the assumption that the log-returns in the Black–Scholes
model are independent and identically distributed.

3 Limitations and generalizations The beauty and usefulness of the Markowitz approach towards
portfolio selection rely strongly on the fact that optimal portfolios
can be computed in closed form. In the following, we discuss so-
me limitations of the Markowitz approach that have to be kept in
mind when applying it. For some of them, we indicate potential
generalizations, which naturally come along with a loss of ma-
thematical tractability.

3.1 Optimal investment ratio? In practice, the following question is clearly of interest in daily
portfolio management: What is the optimal investment ratio? Un-
fortunately, the Markowitz setting is not rich enough to help ans-
wering this question. This is because the Sharpe ratio is invari-
ant with respect to the investment ratio. Consequently, the task of
optimizing the investment ratio is decoupled from the Markowitz
setup and has to be carried out separately. Either the investment
ratio has to be chosen in a fully discretionary manner by port-
folio management, or it might be found by quantitative methods
that are different from standard Markowitz theory. A prominent
approach is utility maximization, which itself is a huge field of re-
search and its description lies outside the scope of the present
article.

3.2 Standard deviation as risk
measure?

Under the hypothesis that the future portfolio return is normal-
ly distributed, there are plausible mathematical arguments as to
why the standard deviation is a reasonable portfolio risk measu-
re. Within the Markowitz setting, this hypothesis is justified when
assuming that the random vector of the future returns of all d
single risky assets is multivariate normally distributed. However,
unfortunately this asumption is not always justified. Think of a
credit-risky asset which has a non-negligible probability of defaul-
ting. The future return of such an asset can obviously not be mo-
deled well by a normal distribution, since the non-negligible like-
lihood of a default implies a discontinuity in the return distribution
function. In such situations, i.e. when the normality assumption
is not justified, standard deviation is not a good measure of risk
with its drawbacks being well-understood. For instance, it is not
a coherent risk measure in the sense of Artzner et al. (1999).
To quickly grasp the point, it is educational to imagine a portfolio
consisting of d credit-risky assets, each one exposed to wipeout
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risk5, and compare it with a portfolio with identical total invested
capital but consisting only of one of the credit-risky assets, say
asset XY . Typically, the diversified portfolio is expected to have
a smaller standard deviation, since the wipeout risk is reduced
significantly on portfolio level (since it is unlikely that all names
in the portfolio are wiped out). However, it is easy to imagine a
situation in which the asset XY has higher expected return than
the diversified portfolio; so high that both portfolios have identi-
cal Sharpe ratios. In this case, the Markowitz setting does not
distinguish between the two portfolios. However, most portfolio
managers, not only the most risk averse ones, would typically
prefer the diversified portfolio because the single-asset portfolio
faces a significantly larger wipeout risk. Such additional portfolio
preferences might be incorporated using the notion of so-called
utility functions and/or by enhancing the list of key figures to be
used for portfolio selection - but the Markowitz setup alone is not
rich enough to accomplish this.

3.3 Risk-return perspective sufficient? Related with the problems associated with the use of standard
deviation is the general concern about the loss of essential infor-
mation when narrowing down something as complex as a multi-
variate probability distribution of d asset returns to a two-dimensional
risk-return measurement. For example, two portfolio returns might
have identical first and second moments, but different skewness
and kurtosis measurements. The Markowitz setting does not dis-
tinguish between the two, even though portfolio management
might wish to include selection criteria that can. Of course, one
might include even more key figures than just moments into the
analysis, e.g. default probabilities in the case of credit-risky as-
sets. However, these generalizations come along with a huge
loss in mathematical tractability. The high level of mathematical
tractability in the Markowitz setting relies strongly on the fact that
the elegant apparatus of linear algebra fits together smoothly
with the concept of reducing random variables to their first two
moments only. Generally speaking, it is an applied mathematici-
an’s most delicate routine to decide whether a model’s level of
tractability outweighs its lack of realism, or not.

3.4 Estimation of Σ and µ? It stands to reason to estimate the required inputs Σ and µ from
historical asset return data, which is anything but a straightfor-
ward thing to do.
On the one hand, the estimation of Σ is quite challenging in ge-
neral but at least theoretically possible, with canonical estimators
improving with the length of the time series, cf. Lindskog (2000);
Ledoit, Wolf (2004) for prominent references on this topic. Theo-
retically, the more assets are considered (i.e. the larger the ma-
trix dimension d) the longer is the time series length required to
obtain reliable estimates. In practice, this is typically not satisfied
so that a non-negligible estimation noise remains. Laloux et al.
(1999) point out that this estimation noise affects the accuracy of
small eigenvalues and associated eigenvectors of Σ more than it
does affect large eigenvalues and associated eigenvectors. This

5We mean the risk of loosing all money invested into the asset. An example
in practice would be a subordinated bond.
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is unfortunate because optimal Markowitz portfolios are naturally
dominated by eigenvectors associated with small eigenvalues. If
x is an eigenvector associated with a small eigenvalue λ > 0
satisfying ||x|| = 1, the standard deviation

√
xT Σx =

√
λ is

small. Consequently, either x or −x (depending on the sign of
(µ − r 1)T x) leads to a large Sharpe ratio, inducing a portfolio
with large preference in the Markowitz-sense according to Theo-
rem 2.5.
On the other hand, it is well-known that the estimation of the ex-
pected future asset returns µ is impossible based on historical
data, even if a normal distribution assumption is well-justified. To
see this, denote the price of an asset over time by Xt. Obser-
ving this price over the period [0, T ] at the n distinct time points
ti := i/n · T , i = 0, 1 . . . , n, the sample average of the n obser-
ved log returns log(Xti/Xti−1), i = 1, . . . , n, multiplied by n/T ,
yields the best estimator according to statistical theory under the
hypothesis that log-returns are independent and identically dis-
tributed, i.e.

µ̂n :=
1

T

n∑
i=1

log(Xti/Xti−1) =
1

T
log(XT /X0).

Obviously, this optimal estimator µ̂n does not improve with incre-
asing n. No matter how many data points we have available, the
best estimator relies solely on two data points: the most recent
and the least recent. Needless to say that the confidence interval
for µ̂n does not shrink at all with increasing number of observati-
ons n.
As a consequence of this theoretical impossibility to estimate
µ from historical return data, it is common to derive it from ex-
pert opinion and/or scenario assumptions. A typical scenario as-
sumption could be to assume that all essential fundamentals re-
main constant over the considered time period, consider this the
most likely base case scenario, and compute an expected return
measurement under this hypothesis. Needless to mention that
such an approach entails a massive lack of mathematical rigor.
Rather, it has to be viewed as a subjective opinion of portfolio
management. A concrete example of such a derivation of µ ba-
sed on scenario assumptions is provided in Section 4.

4 An application of the theory to

our fund XAIA Credit Curve Carry

We demonstrate how the Markowitz setting provides a relatively
simple quantitative tool to optimize the portfolio weights in our
fund XAIA Credit Curve Carry. In the light of the preceding secti-
on it goes without saying that this approach is not a panacea, but
can at best be an indicative assistance tool for an active portfolio
management.
A single position in our fund XAIA Credit Curve Carry tries to
profit from the shape of an observed CDS curve in the following
way. If the CDS curve associated with some reference entity is
very steep, the idea is to sell long-dated protection on that name,
and buy short-dated protection with the same nominal on the
same name. For such a so-called flattener position, there are
two sources of potential income that can be quantified and that
play an important role for the investment idea:
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(i) If there is a credit event with respect to the reference entity
prior to the maturity of the short-dated CDS, the initial upfront
difference between long-dated and short-dated CDS is gai-
ned, which is typically positive for steep curves.

(ii) If the CDS curve shape does not change at all over time,
that is if today’s CDS par spread for an x-year CDS equals
the par spread for an x-year CDS in one year (for all x), then
the curve steepness implies a “roll-down gain” that is earned,
called roll-down yield hereafter.

In the complimentary cases when no credit event takes place
and the CDS curve shape changes over time (e.g. flattens or
steepens), the position makes profits and losses that can be both
positive (if flattening) or negative (if steepening). The major ass-
umption of portfolio management is that the aforementioned roll-
down yield can be earned over time on statistical average in case
no credit event takes place. The fund concept relies on this con-
viction.

4.1 Definition of r, µ and Σ The risk-free rate of return r is retrieved from observed interest
rate swap prices based on a 3-month tenor EURIBOR rate, for
instance according to one of the bootstrapping algorithms des-
cribed in Hagan, West (2006, 2008).
According to the investment idea described above, the k-th com-
ponent µk of µ is defined as

µk := pk · roll-down yield + (1− pk) · upfront difference + r,

with pk denoting the probability that no credit event takes place
before maturity of the short-dated CDS (typically about one ye-
ar). The probability pk might be extracted from the CDS curve, for
instance by the standard algorithm that bootstraps a piecewise
constant default intensity function from CDS prices with different
maturities. We add r to the definition of µk, because only a small
fraction (if any) of the money we receive from our investors is
actually spent due to the derivative nature of the involved instru-
ments. We distribute the lion’s share of the received capital over
a battery of low-risk cash instruments, which we identify with the
risk-free asset within the Markowitz model.
The derivation of the matrix Σ can be based on historically ob-
served CDS prices. Each single position in the fund consists of
a short CDS with maturity T (s) and a long CDS with maturity
T (l) < T (s). Historically, we do observe the price of this flatte-
ner position under the assumption that we have rolled both CDS
at each past roll date (even though in reality we might not ha-
ve done so). Consequently, for each single position we observe
a price time series of the form −u(s)t + u

(l)
t , where u

(s)
t deno-

tes the upfront of the (long-dated) short CDS at time t, and u(l)t
the upfront of the (short-dated) long CDS at time t. The potential
worst case for such a position at time t < T (l) is the release of
information to the marketplace which makes certain that a credit
event will take place between T (l) and T (s), and the subsequent
CDS auction will yield zero recovery for sure. The worst case
loss in this case is 1 − u(s)t + u

(l)
t , which is always positive and
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which we define as the invested capital at time t. Consequent-
ly, the log return over the period [t1, t2] is reasonably defined by
log
(
(1− u(s)t2 + u

(l)
t2

)/(1− u(s)t1 + u
(l)
t1

)
)
. From observed time se-

ries of daily log returns of all positions in the portfolio according to
this definition, we estimate Σ as n times their associated sample
covariance matrix, with n denoting the length of the time series.
This estimation strategy relies on the assumption that the histo-
rically observed vectors of daily log returns are independent and
identically distributed, in which case this estimator is well-known
to be optimal in the sense of standard statistical theory. Howe-
ver, the remarks in paragraph 3.4 discuss the unavoidable flaws
of this estimation problem.

4.2 Looking at our portfolio through
Markowitz goggles

Figure 2 visualizes the Markowitz (σ, µ)-plane for our fund XAIA
Credit Curve Carry on 25 September 2017. It is observed that
our portfolio has a Sharpe ratio of 1.1, while the market port-
folio has a significantly better Sharpe ratio of 2.39. However, it
can already be observed from the boundary of D+(1) in Figure
2 that the market portfolio contains short-selling, which is not re-
asonable in our particular case. In theory, of course one could as
well sell the short-dated CDS protection and buy the long-dated
CDS protection, i.e. short-sell a flattener position, but this sign
change, seemingly innocent in theory, in practice comes along
with typically huge bid-ask spreads on both involved CDS, so
that the mathematical model, ignoring these transaction costs,
becomes unrealistic and useless. Consequently, we can only ap-
ply the Markowitz setup with short-selling restriction, i.e. consider
D+(1) instead of D(1). The only interesting part of Figure 2 is
hence the location of the white dot (representing our portfolio’s
(σ, µ)-projection) within the dotted line within the dark gray area
(bounding the projection of the set D+(1) of fully invested port-
folios without short-selling). Following the Markowitz paradigm
thoroughly, we would like to see that the straight line through
(0, r) and the white dot (i.e. the white dotted line) is tangent to
the boundary of the (σ, µ)-projection of D+(1). This not being
the case means that we can actually increase the Sharpe ratio
of our portfolio by changing our portfolio weights. We even see
that one single position is located northwest to the red line, mea-
ning it has a higher Sharpe ratio than our portfolio. This means if
we sell our portfolio and instead put all our money into this parti-
cular flattener position, we obtain a portfolio that is superior with
respect to Markowitz theory. This shows quite clearly how the
aforementioned limitations of Markowitz theory lead to essential
problems in practice. Our portfolio consists of 25 names, whose
weightings deviate from an equally weighted basket only within
pre-described boundaries. This discretionary management deci-
sion, which is not naturally incorporated in the Markowitz setting,
relies on the conviction that a portfolio concentration on too few
names leads to an amount of drawdown risk which cannot be
outweighed by an increased Sharpe ratio.

4.3 Daily portfolio rebalancing Even though we have learned about the limitations of Markowitz
theory in Section 3, we believe that the related concept of Sharpe
ratio maximization can still be useful to assist with certain portfo-
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Fig. 2: Visualization of the (σ, µ)-plane for our fund XCCC, when
only the d assets we already hold define the cosmos of
possible investments. The white crosses represent the
single positions in the portfolio, the white dot represents
the portfolio.

lio selection decisions that have to be made on a regular basis.
This will be explained here, starting with the following question
that appears frequently:

(Q) “Should we add a certain new position into our existing port-
folio?”

A quantitative answer to this question could, at least partially, be
based on the Sharpe ratio, leading to inclusion (rejection) of the
new position if it increases (decreases) the portfolio Sharpe ratio.
Making use of Equation (7), this can be accomplished by com-
paring the potential position’s contribution to the portfolio return
with its contribution to portfolio variance. Based precisely on this
idea the XAIA institute article Mai (2017) explores when a macro
hedge improves portfolio performance.
Similarly, the following question of daily portfolio weight fine-tuning
is frequently of interest:

(Q) “Which holdings in our existing portfolio should be increa-
sed/ decreased?”

Again, an answer to this question could be based on the Shar-
pe ratio to some extent. As already mentioned in paragraph 2.2,
Equation (6) induces a ranking of all current portfolio positions,
with the top (bottom) names of the ranking being the most ur-
gent ones to be increased (decreased). From a risk-return per-
spective, performing the related portfolio adjustments moves the
white dot in Figure 2 (representing the existing portfolio) into
the direction of the market portfolio’s (σ, µ)-projection. Despite
the aforementioned limitations of Sharpe ratio maximization, the
concept of such a Sharpe-ratio based ranking in daily portfolio
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re-balancing might be useful, since the proposed adjustments
could be performed within the bounds of further, discretionary
management rules. On a high level, this means that Sharpe ratio
maximization is used as one, but not the only one, tool to manage
the portfolio.

5 Conclusion The quantitative basics of modern portfolio theory à la Marko-
witz have been summarized. In particular, it has been emphasi-
zed that Markowitz optimality stands in close connection to Shar-
pe ratio maximization. Several shortcomings of Markowitz theory
have been discussed, and the whole concept has been demons-
trated in an application to our fund XAIA Credit Curve Carry.
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A Proof of Theorem 2.1 Instead of minimizing the function x 7→
√
xT Σx, we might as

well minimize half of its square, as x 7→ x2/2 is monotone on
[0,∞). Resorting to the Lagrange multiplier method to accom-
plish the optimization under side constraints, the Lagrange func-
tion under consideration is thus

F (x, λ1, λ2) :=
1

2
xT Σx− λ1 (xT 1− 1)− λ2 (xT µ− c).

Setting its gradient equal to zero to check for critical values, we
obtain the equation system

(i) Σx = λ1 1 + λ2µ, (ii) xT 1 = 1, (iii) xT µ− c.

From (i) it is already observed that any critical point x lies in the
span of Σ−1 1 and Σ−1µ. Plugging (i) into (ii) and (iii) gives a
linear equation system for the two unknowns λ1, λ2, which deter-
mines them uniquely as(

λ1
λ2

)
=

(
[µ,1] [1,1]
[µ,µ] [µ,1]

)−1 (
1
c

)
=

(
c [1,1]−[1,µ]

[µ,µ] [1,1]−[1,µ]2

[µ,µ]−c [1,µ]
[µ,µ] [1,1]−[1,µ]2

)
.

Since the set D(1, c) is convex and the function x 7→ xT Σx/2
is strictly convex on Rd, the unique critical point of the Lagrange
function equals the unique minimizer of portfolio standard devia-
tion on D(1, c), which is observed to be x(c), as claimed. The
respective minimum s(c) is computed easily, finishing the proofs
of parts (a) and (b). Part (c) is immediate, and part (d) is obtained
by inverting the function s(c) of part (b).

B Proof of Theorem 2.3 By part (d) of Theorem 2.1, the slope of a point s on the efficient
frontier c+(s) is given by

∂

∂s
c+(s) =

√
[µ,µ] [1,1]− [1,µ]2 s√

s2 [1,1]− 1
.

By definition, the market portfolio has standard deviation s such
that

(
s, c+(s)

)
equals the unique point of tangency of the efficient

frontier with a line through (0, r). Thus, s is characterized by the
equation

r +
∂

∂s
c+(s) s = c+(s),

which is an equation that can be re-arranged to

√
s2 [1,1]− 1 =

√
[µ,µ] [1,1]− [1,µ]2

[1,µ]− r [1,1]
. (8)

Using part (d) of Theorem 2.1, this yields the expected return

c+(s) =
[1,µ]

[1,1]
+

√
[µ,µ] [1,1]− [1,µ]2

[1,1]

√
s2 [1,1]− 1

(8)
=

[µ,µ]− r [1,µ]

[1,µ]− r [1,1]
,

which implies the claim.
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C Well-definedness of the Sharpe

ratio requires positive definite Σ

If Σ was singular, there was a non-zero portfolio x ∈ Rd \ {0}
of risky assets with zero variance xT Σx = 0, i.e. a risk-free
asset combined by risky assets. If further µT x 6= 0, then the
(non-zero) risk-free asset sgn((µ − r 1)T x)x would have infi-
nite preference p

(
x0, sgn((µ − r 1)T x)x

)
= ∞, hence could

be considered an arbitrage. Finally, left to discuss is the case
that (µ − r 1)T x = 0 for all x in the kernel of Σ, denoted by
ker(Σ), in which well-definedness of p(x0,x) is a priori uncle-
ar due to the fact that we divide zero by zero. However, this
turns out to be an irrelevant case, as will be briefly explained.
By the assumption in this case, the kernel of Σ is contained in
the vector space 〈µ−r 1〉⊥ consisting of all vectors orthogonal to
µ−r 1, so is contained in a (d−1)-dimensional subspace. There
exists an orthogonal basis of Rd of the form (µ−r 1,x2, . . . ,xd),
with (xm, . . . ,xd) an orthogonal basis of ker(Σ), for some m ∈
{2, . . . , d}. Any x ∈ 〈µ − r 1d〉 ⊕ ker(Σ) has a unique repre-
sentation of the form x = λ

(x)
1 (µ − r 1d) +

∑d
k=m λ

(x)
k xk with

λ
(x)
k ∈ R, implying that

p(x0,x) = sgn
(
λ
(x)
1

) (µ− r 1)T (µ− r 1)√
(µ− r 1)T Σ (µ− r 1)

.

Consequently, p(x0, .) takes exactly two different values (namely
with different signs) on ker(Σ), except for the trivial case µ = r 1,
in which it is identically zero. Thus, there is no way to extend
p(x0, .) continuously from Rd \ ker(Σ) to all of Rd \ {0} except in
the trivial case µ = r 1.
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